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1. INTRODUCTION

The Atmospheric Infrared Sounder (AIRS) is a facility instrument selected by
NASA to fly on the second Earth Observing System polar orbiting platform, EOS-PM 1.
The same platform will also carry the NOAA operational Advanced Microwave Sounding
Unit, AMSU-A, and the Microwave Humidity Sounder of Brazil (HSB).  AIRS is
designed to meet the requirements of the NASA Earth science research programs and the
NOAA operational plans.  

The AIRS/AMSU system will provide both new and improved measurements of
clouds, atmosphere, and land and oceans, with the accuracy, resolution and coverage
required by future weather and climate models.  Such data will be used to validate climate
models, study geophysical processes, and monitor trends.  The purpose of this document
is to give an overview of the important climate data sets that AIRS/AMSU will produce:

• atmospheric temperature profiles with an average layer accuracy of 1K in 1 km
thick layers in the troposphere and 1K in 4 km layers in the stratosphere

• sea surface temperature

• land surface temperature and infrared spectral surface emissivity

• humidity profiles and total precipitable water vapor

• fractional cloud cover, cloud spectral infrared emissivity, and cloud-top pressure
and temperature

• total ozone column density and column density in three layers of ozone of the
atmosphere

In this document we present the theoretical basis of the AIRS Core Algorithm.
Many products are presented in one document because of the basic structure and approach
of the Core Algorithm.  In order to achieve the basic requirement of temperature profile
accuracy of 1K in 1 km thick tropospheric layers, a multi-spectral simultaneous retrieval of
the atmospheric thermodynamic state is attempted.  Hence the Core Products refer to the
basic thermodynamic variables that control the outgoing infrared radiance.

Furthermore, we consider this document as a snapshot of current status of the
AIRS software development effort.  We fully expect that many refinements will be made
to the algorithms and to the simulation data we use to test the algorithms.  The refinements
will reflect added algorithm robustness and parameter retrieval improvements.
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2. OVERVIEW AND BACKGROUND INFORMATION

2.1 Experimental objectives

The Earth's climate is a complex system with many components and feedback
processes that operate on different time scales.  The slow components involve the deep
oceans, and permanent and semi-permanent ice and snow covers.  Their response sets the
pace for long-term climate trends and may introduce a delay of 50 years or more in the
response of the climate system to external forcing.  The fast components, whose scales
range from hours to multiple seasons,  encompass the atmosphere, upper ocean layers, and
include the biosphere as well as air-land and air-sea interactions.  The fast components are
coupled and are controlled by the atmosphere, which drives the whole Earth environment
and determines the amplitude and geographical patterns of climate change.  The
atmosphere controls many feedback processes that involve the interaction of radiation with
clouds, water vapor, precipitation and temperature.  Thus, a knowledge of the properties of
the atmosphere is important not only for understanding processes that occur within the
atmosphere itself; but also for understanding the feedback mechanisms among the various
components of the entire climate system.  Atmospheric and surface measurements from
AIRS will  provide data about these interactions with unprecedented accuracy.

The ability of AIRS/AMSU to provide simultaneous observations of the Earth's
atmospheric temperature, ocean surface temperature, and land surface temperature, as well
as humidity, clouds, albedo, and the distribution of greenhouse gases, makes AIRS the
primary EOS instrument for investigating several interdisciplinary issues to be addressed
in Earth science.  Among these issues are:

• Improving numerical weather prediction.
• Demonstrating seasonal to interannual predictions of the effects of El-Nino and

other transient climate anomalies.
• Characterizing the optical properties of atmospheric constituents, cloud and

aerosols, in order to compute radiation fluxes.
• Monitoring variations and trends in the global energy and water cycles.

2.2 Historical perspective

The basic physics involved  in the  design of  a temperature  sounder  from earth
orbit was published in the late 1950's (Kaplan 1959).  Ten years  later, and shortly after
Chahine (1968) published the  relaxation algorithm  to  invert   spectral  radiances   to
obtain  temperature   profiles, the   first  experimental  temperature  soundings  from  space
were  achieved using  the  Satellite Infrared Radiation Spectrometer (SIRS), a  seven
channel  grating  spectrometer on NIMBUS-4 with a spectral resolution (λ/∆λ ) of 100 in
the 15 µm CO2 band (Wark and Hilleary 1969).  The presence of  clouds in  the  field-of-
view posed a major challenge. Smith  (1968) published  a monograph  on this topic and
proposed  a numerical  technique, the  N* parameter,  for  "cloud-clearing".  Clouds
become  optically  thick  much  quicker  in  the  infrared (15 µm =  0.0015 cm)  than at  57
GHz  (0.5 cm)  microwave sounding  frequencies.  Staelin et al. (1975a) demonstrated  the
capability  to sense  atmospheric temperature within and below clouds in the  microwave
with  the Nimbus-E Microwave Sounder (NEMS).  Unfortunately, the  mid to lower
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tropospheric vertical resolution  achievable in the microwave is inferior  to that  achievable
in the 4.3 µm CO2 band (see Table 2.1).  A physical  basis for  "cloud-clearing"  infrared
radiances was proposed by Chahine  (1974).  Smith  et al.   (1978)  demonstrated the N*
technique using  the ITPR  on the NIMBUS-5  satellite.  Aumann  and  Chahine (1976)
and Chahine et al.  (1977) demonstrated temperature sounding of partly cloudy
atmospheres using  4.3 µm CO2 and 11 µm window  channels.  A  cloud-clearing
technique,  which  combines the use of infrared and microwave data,  is now  routinely
applied  in the NOAA operational sounding system as well as at NASA Goddard Space
Flight Center (Susskind et al. 1984).   This method  takes advantage  of  the fact  that, to
first order,  the microwave  data are  not affected  by  most types of clouds and makes the
assumption that  the horizontal  inhomogeneity in  the  scene  due  to  clouds  is  much
larger  than  the  inhomogeneity  due  to  temperature profile changes on a scale  of a
microwave field-of-view.   By  1978 the HIRS-2 sounder (Smith, et al., 1979), a
radiometer with 19 channels between 3.7 µm and 15 µm and a spatial resolution of  about
75 kilometers,  plus the  Microwave Sounding  Unit,  MSU ( a follow-up to NEMS), with
4  channels near  the 57  GHz oxygen  band,  became the first of the TIROS Operational
Vertical Sounders (TOVS).   This  system is the current operational NOAA sounding
system.  The NOAA Polar Orbiting Sounding System will soon be upgraded with the
HIRS3, AMSU-A and AMSU-B, to be launched on NOAA-K in 1997.

2.3 Instrument characteristics

AIRS is a continuously operating cross-track scanning sounder, consisting of a
telescope that feeds an echelle spectrometer.  The spectrometer analyzes thermal infrared
radiation between the wavenumbers of 650 cm-1 - 2700 cm-1, with an average resolving
power of 1200. This spectral region includes the important temperature sounding regions
in the 4.2 and 15µm CO2 bands, water vapor sounding in the 6.3 µm water band and ozone
sounding in the 9.6 µm region. AIRS has about 2400 detector elements at the focal plane,
arranged in several linear arrays. Each detector has a noise-equivalent difference
temperature on the order of 0.2K (at  250K) seen in each 1.1° Instantaneous Field Of View
(IFOV) -- see Figure 2.1.

During each scan, the rotating external mirror scans the underlying Earth from 49°
on one side of the nadir to 49° on the other side, in 90 integration periods, and provides
two views of dark space, one view of an internal radiometric calibration target, and one
view of an internal spectral calibration target.  Thus each scan produces 94 sets of
measurements (90 Earth scenes and 4 calibrations).  The scan is repeated every 8/3
seconds.  The downlink data rate from the AIRS instrument is 1.2 Mbit/sec.  

Proper interpretation of AIRS data requires the use of co-located temperature and
humidity data from a passive microwave sounder.  Therefore, the Advanced Microwave
Sounding Unit (AMSU) instrument will fly as part of the AIRS instrument complement
on EOS.  This instrument (which will fly on the NOAA-K, -L, -M, and -N weather
satellites) is composed of two subsystems, AMSU-A and the Humidity Sounder of Brazil
(HSB) (formerly the Microwave Humidity Sounder, MHS).

AMSU-A is a cross-track scanning multispectral microwave radiometer, with a
3.3° IFOV and 15 spectral channels (23 GHz - 90 GHz).  Each cross-track scan produces
32 sets of measurements (30 Earth looks, 1 dark space calibration, and 1 internal
blackbody radiometric calibration).  The scan repeats every 8 seconds, being synchronized
with every 3 AIRS scans (via the spacecraft master clock).
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HSB is a cross-track scanning multispectral microwave radiometer, with a 1.1°
IFOV and 4 spectral channels (150 GHz - 183 GHz).  One channel was eliminated from
those of AMSU-B by our Brazilian partners as a cost saving measure.  Each cross-track
scan produces 92 sets of measurements (90 Earth looks, 1 dark space calibration, and 1
blackbody calibration).  The scan repeats every 8/3 seconds, being synchronized every third
scan line.

The overlap between AIRS and AMSU-A footprints in the cross-track direction is
illustrated in Figure 2-1.  Note that HSB and AIRS will share approximately the same
footprints. The current retrieval system produces one set of core products per AMSU-A
footprint.

AIRSAMS U

FIGURE 2.1 AIRS/AMSU SCHEMATIC FOOTPRINT PATTERN

2.4 Measurement Strategy

During the past 20 years, considerable progress has been made in passive infrared remote
sensing of temperature profiles. Currently, the combination of the High Resolution Infrared
Sounder (HIRS) and the Microwave Sounding Unit (MSU) provides atmospheric
temperature profiles with an average RMS error of approximately 2.0 K, with a vertical
resolution of 3 to 5 km in the troposphere. This accuracy, however, falls short of the
requirements for numerical weather prediction models.  At present the need for improved
sounding is accentuated by the fact that, during the past decade, models have evolved more
rapidly than the capabilities of satellite-borne temperature sounders to supply accurate data.
The inability of current sounders to match the vertical and horizontal resolution of general
circulation models and difficulties in correcting for the effects of clouds are the major
deficiencies to be improved upon.

The limitation in vertical resolution is caused mainly by the broadness of the
contribution functions (i.e., the weighting function multiplied by the Planck function - see
Figure 2.2) of current instruments.  When the contribution functions are broad, emitted
energy reaching the satellite in each channel will have components originating from a thick
layer of the atmosphere, thereby making the discrimination of fine-scale vertical details
practically impossible. This problem is compounded by the limited number of HIRS
channels. Furthermore, because of the broadness of the contribution functions (see  Table
2.1) and difficulties in eliminating cloud contamination effects, as well  as surface
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emissivity, O3, H2O, and other minor constituents, the RMS errors in the retrieved
temperature profiles remain high. AIRS takes advantage of the temperature dependence in
the high-J lines in the 4.18 µm CO2 band to sharpen the weighting functions.
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TABLE 2.1 CONTRIBUTION FUNCTION HALF WIDTH AS A FUNCTION OF SPECTRAL RESOLUTION
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FIGURE 2.2 SCHEMATIC ILLUSTRATION OF A CONTRIBUTION FUNCTION AS A FUNCTION OF ATMOSPHERIC
PRESSURE WHERE B IS THE PLANCK FUNCTION, τ IS THE TRANSMISSION TO SPACE, AND P IS THE PRESSURE

Experience with the current generation of sounders has shown that amalgamation
of microwave and infrared data is a very useful combination for accurate elimination of
most effects of clouds.  Microwave observations in the 50 GHz region are not affected by
most types of clouds, which allows them to be used as an accurate filter to retrieve a variety
of clear-column parameters.  Some microwave channels are affected slightly by the
surface, especially over land, and are less effective for filtering out low clouds.  Visible
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channels are needed here as a diagnostic to discriminate between low-level clouds and
different types of terrain.

All AIRS/AMSU sounding channels, including the visible channels, must observe
the same field-of-view at approximately the same time.  This simultaneity requirement will
insure that all the channels observe the same clouds and, consequently, the same cloud
correction applies to all the frequencies.

Infrared Measurements

High spectral resolution in the infrared is key to achieving high vertical resolution.
In the troposphere, the ability of microwave channels to provide high vertical
discrimination is inherently weak.  High J-lines in the R-branch of the 4.18 µm region, in
which the CO2 absorption coefficient increases rapidly with increasing temperature,
provide the highest possible lower tropospheric vertical resolution of any part of the
infrared spectrum and this resolution enhancement can be captured only through high
spectral resolution measurements.  In addition, a sufficiently large number of 15 µm
infrared channels are required in the upper troposphere and adjacent lower stratosphere; and
this requirement can also be satisfied as a consequence of high spectral resolution.  High
spectral resolution also permits selection of sounding channels not contaminated by water
vapor lines or by emission from other active gases, and provides spectrally clean window-
channels for surface measurements.  The effect of the surface emission must be separated
from the emission of the lower troposphere to provide accurate temperature profiles near
the surface.

The infrared channels to be used for retrieving such parameters as temperature and
humidity profiles, ocean and land surface temperature, clouds and O3, must be selected
carefully.  This is aided by the availability  of  a  number  of  narrow  band-pass channels
that are located away from unwanted absorption lines, while taking advantage of the unique
spectral properties of several regions such as the high J-lines in the R-branch of the 4.3 µm
CO2 band and very clear window channels near 3.7 µm.  A typical AIRS spectra is
presented in Figure 2.3 and Table 2.2 presents the precise AIRS array specifications.
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FIGURE 2.3 SIMULATED AIRS BRIGHTNESS TEMPERATURE SPECTRA FOR CLEAR CONDITIONS
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Beginning 
wavelength 

λ1

Ending 
wavelength 

λ2

Beginning 
wavenumber 

µ1

Beginning 
wavenumber 

µ2

3.736 3.917 2676.37 2553.04
3.915 4.110 2554.34 2433.09
4.110 4.329 2433.09 2309.95
4.327 4.609 2311.02 2169.90
6.200 6.493 1612.83 1540.03
6.550 6.850 1526.62 1459.85
6.936 7.477 1441.84 1337.45
7.475 7.792 1337.88 1283.35
7.861 8.220 1272.18 1216.55
8.807 9.480 1135.42 1054.90
9.565 10.275 1045.48 973.24
10.275 10.985 973.24 910.33
11.070 11.751 903.31 850.98
11.743 12.685 851.56 788.33
12.799 13.746 781.32 727.50
13.738 14.553 727.92 687.13
14.667 15.400 681.79 649.35

TABLE 2.2 AIRS 17 DETECTOR ARRAY CUTOFF WAVELENGTHS (AS MEASURED IN A VACUUM)

Microwave Measurements
AMSU-A consists of 12 channels within the 50-60 GHz portion of the oxygen

band to provide temperature and precipitation information.  In addition, AMSU-A contains
three window-channels at 24, 31 and 89 GHz to provide total precipitable water, cloud
liquid water content and precipitation measurements.  These channels will also be used to
provide information on sea-ice concentration and snow cover.  The 3-dB beam diameter of
AMSU-A is 3.3°, corresponding to about 50x50 km at nadir.  The set of 15 microwave
channels is given in Table 2.3.

A second microwave instrument package will also be provided.  The Microwave
Humidity Sounder of Brazil (HSB), formerly AMSU-B, contains one window-channel at
150 GHz to obtain high resolution measurements of precipitation, snow cover and sea-ice
with the same spatial footprint as AIRS.  Three additional channels in the 183 GHz water
vapor line will be used to improve the accuracy of atmospheric humidity profiles and total
precipitable water vapor.  The 3-dB beam diameter of HSB is 1.1°, corresponding to about
16 km at nadir. The full set of HSB (AMSU-B) channels and their specifications is given
in Table 2.4.
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Channel Center Frequency Bandwidth Function
  No.       (MHz)

  1 23.800    GHz             270 Water Vapor Burden
  2 31.400    GHz             180 Surface Temperature
  3 50.30    GHz         180 Surface Temperature
  4 52.800    GHz             400 Surface Temperature
  5 53.596 ±0.115 GHz 2x170 Tropospheric  Temp
  6 54.400    GHz             400 Tropospheric Temp
  7 54.940    GHz             400 Tropospheric Temp
  8 55.500    GHz             330 Tropospheric Temp
  9 57,290.344      MHz 330 Stratospheric Temp

(= f9)
 10 f9 ±217   MHz 2x78 Stratospheric Temp
 11 f9 ±322.2±48    MHz             4x36 Stratospheric  Temp
 12 f9 ±322.2±22    MHz             4x16 Stratospheric  Temp
 13 f9 ±322.2±10    MHz             4x8 Stratospheric  Temp
 14 f9 ±322.2±4.5   MHz             4x3 Stratospheric  Temp
 15 89.0    GHz             6000 Cloud Top/Snow
________________________________________________________________________________

TABLE 2.3 AMSU-A CHANNEL SET (3.3 DEGREE BEAM DIAMETER)

Channel Center Frequency       Bandwidth Function
  No.       (GHz)    (GHz)

  1*
  2   150.0 4000 Water vapor
  3   183.31 ± 1.0 2x500 Water vapor
  4   183.31 ± 3.0 2x1000 Water vapor
  5   183.31 ± 7.0 2x2000 Water vapor
________________________________________________________________________

TABLE  2.4  HSB  (AMSU-B) CHANNEL SET (1.1 DEGREE BEAM DIAMETER)
*Channel 1 (89 GHz) has been deleted for the HSB
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Visible and Near-infrared Measurements
AIRS will also carry a small set of visible channels as a diagnostic aid in

accounting for low-level clouds. In addition, the visible channels are needed to diagnose
land surface inhomogeneities for the determination of surface temperature and emissivities
and enhance the synergism with the Moderate Resolution Imaging Spectroradiometer
(MODIS) on EOS.  A set of visible and near-infrared channels between 0.4 and 1.1 µm is
presented in Table 2.5.  There are 36 spots within one AIRS infrared footprint.

________________________________________________________________________

Channel No. Frequency Range  (µm) IFOV

________________________________________________________________________

  1     0.40 - 0.44  1.1°/6
  2    0.58 - 0.68    1.1°/6
  3     0.71 - 0.98  1.1°/6
  4     0.40 - 1.06* 1.1°/6

________________________________________________________________________
*  warm Si-diode cutoff

TABLE  2.5  VISIBLE CHANNEL SET
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3 The Forward Problem

In the following, atmospheric radiative transfer or the ‘forward problem’ will be
discussed.  Because the retrieval methodology utilized by the AIRS team depends on the
ability to accurately determine the outgoing radiance, particular attention will be paid to
errors in the spectroscopy and errors in modeling the outgoing radiation  --  the rapid
forward model.  To overcome these error sources, a process known as tuning is used to
remove systematic effects and is described in section 5.1.

3.1. Radiative Transfer of the Atmosphere in the Microwave
(Rosenkranz/Staelin)

At the frequencies measured by AMSU-A and HSB, the most important absorbing
gases in the atmosphere are oxygen and water vapor.  The oxygen molecule has only a
magnetic dipole moment, and its lines are intrinsically much weaker than those which
result from the electric dipole of water vapor; however, the much greater abundance of
oxygen in the atmosphere more than compensates for this difference.  When clouds are
present, liquid water also plays a role in radiative transfer.  However, fair-weather cirrus
composed of ice particles small compared to the wavelength are effectively transparent to
microwave radiation.

Oxygen
The dipole moment of O2 is due to two unpaired electron spins and thus it can be

expressed in terms of fundamental constants.  Hence, the intensities of the O2 spin-rotation
transitions are among the most precisely calculable of any molecule.  The values used are
from the JPL line catalog (Poynter and Pickett, 1985).  These transitions comprise
approximately 30 lines between 50 and 70 GHz and an isolated line at 118.75 GHz (which
is not observed by AMSU-A or HSB).  The pressure-broadened widths  of the lines in the
50-70 GHz  band have been measured by several groups.  The most accurate
measurements are probably those of Liebe et al., (1977) and Liebe and Gimmestad (1978),
where the errors were estimated to be ≤ 1% for most of the stronger lines.

The characteristic of oxygen’s microwave spectrum that introduces difficulty for
construction of models is the significant degree of line mixing.  In the Millimeter-wave
Propagation Model (MPM92) (Liebe, et al., 1992), line mixing was treated by a first-order
expansion in pressure, and the coefficients of the expansion were fitted by a constrained
linear method to laboratory measurements made on an O2 - N2 mixture over the frequency
range of 49-67 GHz and the temperature range 279-327 K, with a noise level of
approximately 0.06 dB/km.  Within that range, the model represents the measurements to
≤ 0.2 dB/km (see for example, Figure 3.1.1).  It is possible, however, that extrapolation to
colder temperatures introduces larger errors.  (Recent measurements from the NASA ER-
2 may answer this question.)  There is also some indication from aircraft and ground-based
atmospheric measurements that model errors in oxygen zenith opacity may reach 10-20%
near 30 and 90 GHz.  However, the main absorber at those frequencies is water.
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FIGURE 3.1.1.  ATTENUATION MEASUREMENTS OF TEST AIR AT 279K AND 7 PRESSURES, COMPARED WITH THE
MPM 92 MODEL (FROM LIEBE ET AL, 1992).

Water Vapor
Water has a weak rotational line at 22.23 GHz that is semi-transparent at normal

atmospheric humidities, and a much stronger, opaque line at 183.31 GHz.  Intensities of
these lines have been calculated and tabulated by Poynter and Pickett (1985 -- JPL line
catalog) and Rothman et al., (1992) (HITRAN), among others.  For the 22-GHz line, the
JPL intensity, which is used here, is lower than the HITRAN value by 3%.  There is also a
measurement by Liebe et al., (1969) (estimated error 0.3%) which is 0.5% lower than the
JPL value.  At 183 GHz, the JPL line intensity is 0.8% lower than HITRAN.  Widths have
been measured by Liebe et al., (1969) and Liebe and Dillon (1969) at 22 GHz with
estimated uncertainty of 1% for both self and foreign-gas broadening; and by Bauer et al.,
(1989) at 183 GHz, with uncertainties of 0.5% for self-broadening and 1.6% for foreign-
gas broadening.

At frequencies away from these two lines, microwave absorption by water vapor is
predominantly from the continuum, which is attributed to the low-frequency wing of the
intense infrared and submillimeter rotational spectrum.  In the microwave part of the
spectrum, the foreign-broadened component of the continuum is stronger than the self-
broadened component, for atmospheric mixing ratios.  Measurements of continuum
absorption as a function of temperature have been made at various frequencies by Liebe
and Layton (1987) and by Bauer’s group (Godon, et al., 1992; Bauer et al., 1993, 1995).
There are also numerous measurements at single temperatures and frequencies in the
laboratory, and in the atmosphere where temperature and mixing ratio are variable.  The



AIRS Team Level 2 Algorithm Theoretical Basis Document

Ver 1.7 18 Sept 199712

measurements do not present a consistent picture.  With respect to the foreign-broadened
component, measurements by different experimenters differ by as much as 80% after
adjustments for frequency are made.  The MPM 89 H2O continuum model (Liebe, 1989),
which is based on the Liebe and Layton (1987) measurements, is used here because it
yields the most satisfactory overall agreement with atmospheric measurements.  

Liquid Water
It is useful to distinguish between precipitating and nonprecipitating clouds with

respect to their interactions with microwaves.  Over the range of wavelengths measured by
AMSU-A and HSB, nonprecipitating droplets (with diameters of 50 µm or less) can be
treated using the Rayleigh small-droplet approximation.  In this regime, absorption is
proportional to the liquid water content of the air, and scattering can be neglected.  The
accuracy of calculations is basically determined by the water dielectric constant model. The
double-Debye model of Liebe et al., (1991) is used here; it has an estimated maximum
prediction error of 3% between 5 and 100 GHz, and 10% up to 1 THz.  Precipitation, on
the other hand, requires Mie theory to calculate both absorption and scattering.  The latter is
generally not negligible, and at some wavelengths is predominant.  In the case of
convective storms, scattering from ice at high altitudes is often the most important process.
In simulations so far we have not considered scattering, and the rapid transmittance
algorithm uses only the small-droplet approximation for cloud liquid water.

Rapid Transmittance Algorithm
The physical retrieval algorithms used for AIRS/AMSU/HSB do radiative transfer

calculations for each profile and hence need a computationally efficient transmittance
algorithm.  The microwave algorithm computes an effective channel transmittance between
two adjacent pressure levels as

τ α βρ γρP P V L1 2, exp ,( ) = − + +( )[ ] (3.1.1)

where ρV is the water vapor column density of the (P1, P2) layer, ρL is its liquid water
column density, and the coefficients  α , β, γ, are calculated for each layer and channel.
They implicitly depend on temperature, pressure, and the angle of observation; β also
depends implicitly on ρV.  For AMSU channel 14, α  has a weak dependence on the local
geomagnetic field.  The magnetic field is currently calculated by a fifth-order spherical-
harmonic representation that has an accuracy of a few microteslas.  α  includes the opacity
due to O2 and a small contribution from pressure-induced absorption by N2.
Parameterization of the coefficients uses approximations described by Rosenkranz (1995)
for oxygen-band or window-type channels.  The oxygen-band-channel coefficients are
computed on a set of fixed pressure levels and then linearly interpolated to the pressure
levels of the present retrieval, which can be variable (as is the case for the surface pressure).
Window-channel coefficients use analytic approximations for far-wing line and continuum
absorption.  Channels near the two water lines (AMSU-A channel 1 and HSB channels 3-
5) use a Lorentzian-line calculation for the nearby line, with the contributions of other lines
treated in the same way as for a window channel.  The local water-line parameters, the
water continuum, and the liquid-water absorption are interpolated from a table as functions
of temperature.

The retrieval algorithm described in Sec. 4.1 also makes use of the derivative
dβ/dρV, which is computed in the rapid algorithm by appropriate analytic expressions
corresponding to the local-line and continuum components.
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The transmittance of multiple layers is calculated by taking the product of the
transmittances for each layer.  This transmittance is then used in the radiative transfer
equation to compute brightness temperature:

Θ

Θ

= < > + < >

+ − < > < > + − < >

∫

∫

T P d P T P

P T P d P P P

s

P

s

s s c s

P

s

s

( ) ( , ) ( , )

( ) ( , ) ( ) ( , ) ( ) ( , )

τ ε τ

ε τ τ ε τ

0 0

1 0 1 0

0

0

2

(3.1.2)

where T(P) is atmospheric temperature at level P, Ts and Ps are the surface temperature and
pressure, Θc is the cosmic background brightness temperature (see eq. 4.1.2), and ε is the
emissivity of the surface, assumed to be smooth here.

The ability of the rapid algorithm to approximate a line-by-line calculation was
tested on a set of 300 profiles from the TOVS Initial Guess Retrieval (TIGR) (Chedin et
al., 1985) ensemble.  The first 100 profiles from each of the tropical, midlatitude, and polar
groups were used.  The line-by-line calculation followed Rosenkranz (1993).  Figure  3.1.2
shows brightness temperature errors (mean ± 1 standard deviation) at nadir, with surface
emissivity = 0.7. For the channels that are not opaque (1-5, 15-17, 19 and 20), these
brightness temperature errors depend on surface emissivity. The value ε = 0.7 is typical of
ocean at the highest frequencies, and intermediate between ocean and land at the lowest
frequencies.  Errors for higher-emissivity land surfaces are smaller than in Figure 3.1.2.
The errors for ch. 14 include the consequences of the magnetic field approximation.
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FIGURE  3.1.2.  BRIGHTNESS TEMPERATURE ERRORS (RAPID ALGORITHM MINUS LINE-BY-LINE ALGORITHM) FOR
AMSU-A CHANNELS (1-15) AND AMSU-B CHANNELS (16-20).  VERTICAL LINES INDICATE ± 1
STANDARD DEVIATION.

3.2 Radiative Transfer of the Atmosphere in the Infrared (Strow)

Physical retrievals of atmospheric parameters from infrared spectra require accurate
radiative transfer models, known as forward models, relating the atmospheric parameters
to the observed channel radiances.  The forward model described in this sub-section relates
atmospheric parameters to the layer transmittances required for AIRS radiative transfer
calculations.  In order to keep up with the high data rate of AIRS, such a forward model
must quickly calculate these transmittances, and thus is termed a ‘fast transmittance
model.’  Furthermore, the high spectral resolution of AIRS requires highly accurate
modeling of the molecular spectroscopy of the infrared active gases, especially spectral line
shapes.  Outgoing atmospheric radiances contain emission lines at the higher altitudes with
widths as small  as 0.001 cm-1.  Performing radiative transfer at this spectral resolution,
and then convolving the resultant radiances with the AIRS spectral response function
would be many orders of magnitude too slow for EOSDIS. For this reason, the forward
model provides transmittances suitably convolved with the AIRS spectral response
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function so radiative transfer computations need only be performed for each AIRS channel.
We have developed the Pressure layer Fast Algorithm for AtmoSpheric Transmittances
(PFAAST) for the AIRS forward model.

The PFAAST model actually produces equivalent channel averaged optical depths,
k's, which are related to the layer transmittances, τ 's, by τ = exp(-k).  The optical depth is
the product of the absorption coefficient and the optical path.  For AIRS, a fast model for k
is much more accurate than a model that directly returns layer τ 's. k's are computed for
each of the 100 atmospheric layers used for AIRS radiative transfer (the layering scheme is
discussed in more detail later in this sub-section).  The current PFAAST model allows
water, ozone, methane, carbon monoxide, the temperature, and local scan angle to vary.
All other gases are treated as ‘fixed gases.’  Tentatively, N2O amounts may be allowed to
vary.  In addition, some variation in CO2 amounts will be required, but this may be done
‘off-line’ as a semi-continuous adjustment of the ’fixed gas’ transmittances.  It may also be
necessary to let some of the minor gases vary, such as the chlorofluorocarbons (CFC's).
Although the observed radiances are primarily sensitive to temperature via the Planck
function, the temperature dependence of the transmittances is also important.

Over the years, a number of fast transmittance models have been developed for
various satellite instruments [McMillin and Fleming, 1976; Fleming and McMillin, 1977;
McMillin et al., 1979, 1995; Scott and Chedin, 1981; Susskind et al., 1983; Erye and
Woolf, 1988; Chéruy et al., 1995].  However, some of these models only have been
applied to the model microwave region where the measured radiances are essentially
monochromatic and easier to model.  PFAAST most closely follows Susskind et al.
[1983] by parameterizing the optical depths rather than transmittances.  Preliminary work
has been performed with the new Optical Path TRANsmittance (OPTRAN) algorithm
developed by McMillin et al. [1979, 1995].  Both PFAAST and OPTRAN appear
adequate for AIRS with similar computational requirements [Hannon, et al., 1996].

Basic Radiative Transfer and the Polychromatic Approximation
The monochromatic radiance leaving the top of the atmosphere, excluding any

scattering and clouds, and assuming a Lambertian surface is approximated by
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where B T p[ , ( )]ν  is the Planck function emission for layer p at temperature T(p), τ(ν,p,θ)
is the layer-to-space transmittance at viewing angle θ, τs (ν,p,θ) is the surface-to-space
transmittance, and Ts, εs, and ρs refer to the Earth's surface temperature, emissivity, and
reflectivity respectively. Also, the solar term is represented by H(ν)=2.16x10-5 π B(ν,Tsun).
The polychromatic approximation replaces the monochromatic layer-to-space
transmittances with transmittances convolved with the AIRS spectral response function
(SRF).  In most cases, the AIRS channel radiances calculated from the above equation
using convolved layer-to-space transmittances differ from the convolved monochromatic
AIRS channel radiances by ≤ 0.1 K.  This difference is generally less than the nominal 0.2
K RMS noise of AIRS, and thus does not introduce any serious inaccuracies.  PFAAST
produces effective layer transmittances since they can be modeled more accurately and
because the AIRS retrieval algorithms perform radiative transfer using layer
transmittances.  However, if polychromatic radiative transfer is performed using layer
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transmittances that have been directly convolved from the monochromatic layer
transmittances, large radiance errors will result due to the breakdown of Beer's law.  For
this reason, PFAAST uses layer transmittances derived from ratios of convolved layer-to-
space transmittances, thus preserving Beer's law to a much higher degree.  Although an
exponentiation is required to produce transmittances, PFAAST provides a relatively simple
relationship between optical depths and atmospheric variables.  Scattering is negligible for
long wavelength IR but will be modeled for the short wavelength AIRS channels.

Spectroscopic Inputs
The ultimate goal is to produce a forward model that does not introduce significant

errors in AIRS computed radiances.  In the past, this has not been possible given the state-
of-the-art in atmospheric spectroscopy.  However, advances in laboratory measurements of
line parameters and advances in phenomenological spectral lineshape models make an
accurate AIRS forward model a real possibility.  This is especially important for water
vapor, H2O. Radiosonde humidity errors coupled with always present errors in the time
and space co-location of the radiosonde and AIRS measurements make tuning of the AIRS
H2O radiances quite suspect.  Consequently, the forward model is of fundamental
importance for AIRS data products.  The sensitivity of the AIRS forward model to errors
in spectroscopic line parameters and the development of improved spectral lineshape
models for CO2 and H2O are summarized in the following subsections.

Spectroscopic Line Parameter Errors
Due to the dominance of either CO2 or H2O absorption in the majority of AIRS

channels, the most important spectroscopy errors are associated with errors in the line
parameters and line shapes of these two gases.  The line center frequencies are well known,
and thus should not be a noticeable source of error.  Although there is a shift in the line
center frequency with pressure, these shifts are too small to be of concern for AIRS. The
line parameters most likely to introduce spectroscopy errors into the fast forward model for
AIRS are the line strengths, line widths, and the temperature dependence of the line widths.
However, errors in spectral lineshapes and continuum absorption probably will be more
troublesome than line parameter errors.

Currently, the HITRAN92 [Rothman et al., 1992] database is used for most
atmospheric line parameters, supplemented by more recent water linewidths measured by
Toth [private communication].  The AIRS forward model will be regularly updated with
the latest available line parameters using databases such as HITRAN96 and GEISA
[Husson et al., 1992].  Because there are so many bands and molecules that contribute to
the observed radiances, the accuracy of the existing line parameters is difficult to judge in
detail.  Fortunately for AIRS, most of the important lines of both CO2 and H2O have been
measured in the laboratory .

In general the CO2  line parameters are better known than those for H2O. The line
strengths for the stronger CO2  lines are good to 5% or better, while the H2O line strengths
may only be good to 10%. The H2O line strengths are also more likely to have different
errors for different bands and isotopes.  The effects of these potential errors in line
strengths for CO2 and H2O are shown in Figures 3.2.1 and 3.2.2, respectively.  Note, these
figures assume systematic errors in the line strengths and widths.  While it is reasonable to
expect some level of systematic error, at least over 20-50 cm-1, there will also be random
components to these errors.
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FIG  3.2.1:  TOP:  A MEAN AIRS SPECTRUM IN A PORTION OF THE 15 µm CO2 BAND.  BOTTOM:  THE MEAN
BRIGHTNESS TEMPERATURE ERRORS DUE TO A +5% ERROR IN CO2 LINE STRENGTHS, A +10% ERROR IN
CO2 LINE WIDTHS, AND A +20% ERROR IN THE CO2 WIDTH TEMPERATURE DEPENDENCE.

The estimated uncertainty in the line widths are 10% for CO2 and 20% for H2O.
Again, the H2O widths are more likely to have both larger random and systematic errors
between bands and isotopes. Line width errors will probably be the dominant source of
spectroscopy errors for water, while line strength and width errors will probably be of
approximately equal importance for CO2.  The effects of these errors in line widths for
CO2 and H2O are shown in Figures 3.2.1 and 3.2.2, respectively.

The temperature dependence of the line widths is the least well known, with an
uncertainty of perhaps 20% and sometimes more. However, of the four sources of errors
discussed here, it is the least important.  A plot of the effects of a +20% error in the
temperature dependence of the CO2 line widths is shown in Figure 3.2.1.  The similar error
for H2O is much smaller than those that are shown in Figure 3.2.2.

The uncertainty in the H2O foreign continuum may be as large as 25% in portions
of the 7 µm band.  For AIRS, the maximum errors due to this fall in the 1400 cm-1 region.
A plot of the impact of a +25% error in the H2O foreign continuum is shown in Figure
3.2.2.  In other portions of the 7 µm band these uncertainties are likely smaller.

All of the errors quoted here are somewhat conservative.  Over the next several
years, continuing laboratory spectroscopy efforts, especially in Europe, should lower the
errors quoted here by a factor of two.
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FIG  3.2.2: TOP:  A MEAN AIRS SPECTRUM IN A PORTION OF THE 7 µm H2O BAND. BOTTOM:  THE MEAN
BRIGHTNESS TEMPERATURE ERRORS DUE TO A +5% ERROR IN H2O LINE STRENGTHS, A +10% ERROR IN
H2O LINE WIDTHS, AND A +25% ERROR IN THE FOREIGN BROADENED H2O CONTINUUM.

Molecular Line Shape Effects
Errors in the spectral lineshapes of CO2 and H2O are much more problematic than

line parameter errors.  Because of the large optical depths of CO2 and H2O in the
atmosphere, their spectral line wings can be quite important, especially for remote sensing
of temperature and humidity.  For example, AIRS channels with the sharpest weighting
functions are located in between lines or in the line wings where knowledge of the spectral
line shape is most important.  Moreover, accurate measurements of the line wing
absorption are exceedingly difficult due to problems simulating atmospheric optical depths
in a laboratory cell, especially for H2O. It is also tedious and expensive to make these large
optical depth measurements at the low temperatures found in the upper troposphere.

AIRS will require better CO2 spectral line shapes than are presently available in the
literature.  Recent theoretical developments in line mixing for CO2 Q-branches can affect
AIRS brightness temperature by more than 10K.  These effects are already well
characterized in the line-by-line code used to generate the AIRS PFAAST model, a
specialized version of GENLN2 [Edwards, 1992].  What is presently missing in
GENLN2 is an accurate far-wing model for CO2, especially in the 15 µm region.  L. Strow
(UMBC) and D. Tobin (Univ.  Wisc.)  are presently developing a phenomenological far
wing line shape model for the 15 µm region of CO2 that includes both P- and R-branch line
mixing and duration of collision effects.  These enhancements to GENLN2 should reduce
many existing errors from the mostly empirical models currently used in line-by-line
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forward models.  A CO2 line shape model for the important 4.3 µm channels is also under
development.

Recent laboratory work has greatly improved our knowledge of the H2O line shape
within the strong part of the H2O band [Tobin et al. 1996a, 1996b], a region important for
the determination of mid- to upper-tropospheric H2O.  In addition, recent measurements
with the Atmospheric Emitted Radiance Interferometer (AERI) at the Department of
Energy’s Atmospheric Radiation Measurement program Cloud And Radiation Testbed site
in Oklahoma should lead to an improved H2O continuum in the AIRS window channels
near 10 µm.  However, there are still considerable gaps in our knowledge of the H2O vapor
line shape.  Of particular concern is the 1250 to 1400 cm-1 region used to sense lower
tropospheric H2O. This spectral region is difficult to study in the laboratory because of the
long pathlengths required and is often too opaque in the atmosphere for good
measurements by AERI. Moreover, the H2O continuum switches from primarily a
quadratic dependence to primarily a linear dependence on H2O amount somewhere in this
spectral region.  Continued field measurements, as discussed in Section 8, are needed to
improve our knowledge of the continuum in this region.  If a long enough cell can be
identified, laboratory measurements in the region would also greatly benefit the AIRS
forward model.

Line-by-Line Calculations
The monochromatic layer-to-space transmittances used to determine the parameters

of the AIRS PFAAST model are indirectly generated from the GENLN2 [Edwards, 1992]
line-by-line radiative transfer model.  Over the next several years, we will incorporate the
spectroscopic advances discussed in the preceding section into GENLN2 in collaboration
with David Edwards at NCAR.  These improved line-by-line models will undergo
continual validation and refinement using data acquired in the field campaigns discussed in
Section 8 of this ATBD.

Currently, 36 profiles are used in the regressions for the fast transmittance
parameters.  However, 36 line-by-line calculations for each of the 100 AIRS pressure
layers are not performed directly with GENLN2.  Instead, GENLN2 is used to compute a
very large look-up table of monochromatic layer optical depths for a set of 11 reference
atmospheric profiles.  Such a look-up table is similar to the approach of Scott and Chedin
[1981].  Transmittances for the 36 regression profiles are easily calculated from this look-
up table.  Layer optical depths scale linearly with gas amount since the look-up table is
monochromatic.  In addition, the layer optical depths vary quite slowly and smoothly with
temperature, allowing accurate interpolations in temperature.

A look-up table with 11 evenly spaced temperatures is sufficient to accurately
interpolate the layer optical depths in temperature.  This saves substantial computational
time versus the same calculations for the 36 regression profiles.  Inclusion of an additional
regression profile simply requires an interpolation.  Note, any change in physics in the line-
by-line codes requires recalculation of the entire monochromatic look-up table.  The current
look-up table neglects effects of water vapor self-broadening, thus introducing small errors
in water vapor transmittances.  However, for the AIRS channel widths of ≈ 0.5 to 2 cm-1

this is a reasonably small error, generally < 0.2 K.  Unfortunately, due to its large size, ≈
35 GByte, the monochromatic look-up table is quite cumbersome to use.

Each file in the look-up table covers a 25 cm-1 interval with 10,000 points (0.0025
cm-1 spacing) for 100 pressure layers (0.009492 to 1085 mb).  The pressure layer
structure, described in more detail in the following sub-section, was chosen to produce
errors < 0.2 K in observed brightness temperatures for AIRS.  For each infrared active gas
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and 25 wavenumber region from 605 cm-1 to 2830 cm-1, 11 tables are computed differing
only by the temperature profile.  The 11 profiles are the U.S. Standard profile, and 10
profiles offset from it in ±10K increments.  On average, 7 gases must be included per 25
cm-1 region.  The continua due to gases such as N2 and O2 also are included in these tables.
Because their optical depths are easily computed for any profile, water vapor continuum
absorption and gases provided by HITRAN as cross sections, such as CFC’s, are not
included in the look-up tables.  Optical depths are computed using GENLN2 at a 0.0005
cm-1 grid and then averaged to the database grid spacing of 0.0025 cm-1.  Consequently,
the highest altitude optical depths are not truly monochromatic, but exhibit good integrated
optical depths.  The relatively large width of the AIRS Spectral Response Function (SRF)
results in negligible errors due to this averaging.  Optical depths for all the HITRAN gases,
except CO2 and H2O, are computed using the Voigt lineshape.  As discussed earlier, the
CO2 and H2O lineshapes are modified from the Voigt lineshape.

AIRS Atmospheric Layering Grid
The atmospheric pressure layering grid for the AIRS PFAAST model was selected

to keep radiative transfer errors well below the instrument noise.  Grid characteristics are a
function of the spectral region(s) of observation, the instrument resolution, and instrument
noise.  The speed of the final fast transmittance model will depend on the number of layers,
so excessive layering should be avoided.

GENLN2 simulations indicate some channels need a top layer with pressures as
small as 0.01 mb, an altitude of ~ 80 km.  The region of primary importance to AIRS is
the troposphere and lower stratosphere, where layers on the order of 1/3 the nominal 1 km
vertical resolution of AIRS retrievals are desired.  Smoothly varying layers facilitate
interpolation and avoid large changes in layer effective transmittances.  The following
relation defines the pressure layer boundaries selected for AIRS:

  P ai bi ci = + +( ) /2 7 2 (3.2.2)

where P is the pressure in mb; i is the layer boundary index and ranges from 1 to 101; and
the parameters a, b, and c were determined by solving this equation with the following
fixed values:  P1 = 1100 mb, P38 = 300 mb, and P101 = 5x10-3 mb.  The 101 pressure layer
boundaries in turn define the 100 AIRS layers.  These layers vary smoothly in thickness
from several tenths of a kilometer near the surface to several kilometers at the highest
altitudes.  Figure 3.2.3 displays a plot of this atmospheric layer structure.
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FIGURE 3.2.3: AIRS PFAAST MODEL PRESSURE LAYER STRUCTURE.

Regression Profiles
One other necessary pre-processing step is the selection of a set of profiles for

calculation of the layer-to-space transmittances.  The transmittances for these profiles
become the regression data for the fast transmittance coefficients.  These profiles should
span the range of atmospheric variation, but, on the whole, should be weighted towards the
more typical cases.  The range of variation provides the regression with data points
covering the range of possible atmospheric behavior, while the weighting of the mix of
profiles towards more typical cases produces a transmittance model that works best on
more statistically common profiles.

The process of calculating and convolving monochromatic layer-to-space
transmittances is generally computationally intensive, thus imposing a  practical limit on
the number of profiles one can calculate for use in the regression.  As discussed earlier, 36
regression profiles (at 5 viewing angles each) are sufficient to cover most of the profile
behavior.  This number is a compromise between the available time and computing
resources and the need to cover a wide range of profile behavior in the regression.
Choosing too few profiles leads to accuracy problems for profiles outside the range of
behaviors considered.  Choosing more profiles than necessary does not hurt the fast model,
but does consume extra time and computer resources in the creation of the model.

Each profile should cover the necessary pressure (altitude) range with data for
temperature as well as absorber amount for each of the gases allowed to vary.  The fixed
gases include all those whose spatial and temporal concentration variations have a
negligible impact on the observed radiances.  As previously mentioned, the variable gases
include H2O, O3, CO, CH4, and N2O.  At present, transmittance models for H2O, O3, CO,
and CH4 have been developed; all other gases are included in the ‘fixed gas’ category.  In
the future, N2O and possibly CO2 will be allowed to vary.

For those satellite viewing angles relevant to the AIRS instrument (0 to 49
degrees), the effects of viewing angle can be approximated fairly well by multiplying the
nadir optical depth by the secant of the local path angle.  This approximation neglects the
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minor refractive effect at large angles.  Local atmospheric path angles of 0, 38, 49, 56, and
63 degrees are used in the regression profiles to cover the 0-49 degree satellite view angle
range.

Fast Transmittance Model Parameters
All the steps leading up to the generation of the accurate layer-to-space

monochromatic transmittances have been described in the preceding sub-sections.  They
are the inputs to the regressions that determine the fast transmittance coefficients used in
the AIRS PFAAST model as described below.

    Breakout of Gases
With the layering grid and regression profiles selected, the monochromatic layer-to-

space transmittance can be calculated.  The gases are distributed into sub-groups that are
either fixed or variable.  The details of how the transmittance model simultaneously
handles several variable gases is somewhat complicated and beyond the scope of this
document.  For simplicity, this discussion is restricted to fixed gases (F), water vapor (W),
and ozone (O).  The breakout of the other variable gases is similar.  The monochromatic
layer-to-space transmittances for the 36 regression profiles are calculated for each pressure
layer, grouped into the following three sets, and convolved with the AIRS SRF,
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The shape of each of the channel spectral responses functions will be measured carefully
on the ground.  The centered frequencies will be determined on orbit by spectral calibration.
The accuracy of this is discussed in the L1B AIRS ATBD.

Water continuum absorption is excluded since it varies slowly with wavenumber
and does not need to be convolved with the AIRS SRF. Later, the water continuum is
factored into the total transmittance as a separate term.

For each layer l, the convolved layer-to-space (∞,l) transmittances are ratioed with
transmittances in the layer above, l - 1, to form effective layer transmittances for fixed (F),
water (W), and ozone (O) as follows:
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The exact form of these ratios reduce the errors inherent in separating the gas
transmittances after the convolution with the instrument spectral response function.  The
total effective layer transmittance can be regenerated as follows:

  
FWO F W O

FWO

FWOl
eff

l
eff

l
eff

l
eff l

l

= ∗ ∗ = ∞

∞ −

,

, 1

          (3.2.5)



AIRS Team Level 2 Algorithm Theoretical Basis Document

Ver 1.7 18 Sept 199723

The convolution of a product of terms is in general not the same as the product of the terms
convolved individually.  However, the above formulation guarantees the product of all the
layer transmittances from layer l to ∞ exactly returns FWO∞,l.

The zeroth layer transmittance (i.e. when l - 1 = 0) is taken to be exactly 1.0.  The
negative logarithm of these layer effective transmittances is taken to get effective layer
optical depths,

k F

k W

k O

fixed eff

water eff

ozone eff

= − ( )
= − ( )
= − ( )

ln

ln

ln

(3.2.6)

which are fit with the layer transmittance model.

    Predictors
The effective layer optical depths become the dependent variables in a regression to

calculate the fast transmittance coefficients relating a set of profile dependent predictors to
the layer effective optical depth.  Care must be used to restrict the regression to k values that
are significant for radiative transfer.

The optimal set of predictors used to parameterize the effective layer optical depth
depends upon the gas, the instrument's spectral response function, the range of viewing
angles, the spectral region, and even the layer thicknesses.  In short, no one set of
predictors is likely to work well in every case.  Finding the set of predictors which gives
the best results is, in part, a matter of trial and error.  However, there are some general
trends.

For an instrument such as AIRS with thousands of channels, it is difficult to
develop individual optimal predictors for each channel.  At this point, one set of predictors
for each gas has been developed that works sufficiently well for all channels.  These sets of
predictors were determined by extensive trial and error testing of a few representative
channels estimated to span the range of behaviors present in the entire channel set.  The
most difficult channels to model appear to be ones with low altitude emission by water
lines and those covering the strong ozone band.

The regression is prone to numerical instabilities if the values of the predictors vary
too greatly.  Consequently, we follow the usual practice of defining the predictors with
respect to the values of a reference profile, either by taking a ratio or an offset.  There is
also a danger of numerical instability in the results of the regression due to the interaction
of some of the predictors.  Sensitivity of the output to small perturbations in the predictors
is avoided by systematic testing.  There are practical difficulties in detecting small problems
since we are performing on the order of 1 million regressions.  We hope to regularize these
regressions in the future in a way that might allow automatic trimming of unnecessary
predictors on a channel by channel basis.

For simplicity, only the predictors for the fixed gases are shown:
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where a is the secant of the local path angle, Tr is the temperature ratio Tprofile/Treference, and
Tz is the pressure weighted temperature ratio above the layer

T l P i P i P i T iz r
i

l

( ) ( ) ( ) ( ) ( )= − −( ) −
=
∑ 1 1

2

(3.2.8)

where P(i) is the average layer pressure for layer l.  The predictors for the variable gases
can involve more complicated dependencies on the gas and the pressure weighted gas
ratios above the layer, similar to the temperature terms defined above.  Note, terms like Tz

(or Wz, etc. for the variable gases) makes the layer l transmittance dependent on the
temperature (or gas amounts) in the layers above l.

    Regressions for Fast Transmittance Parameters
The accuracy of radiative transfer calculations made with the AIRS PFAAST

model improve significantly if the data is weighted prior to performing the regression.
Radiative transfer is insensitive to layers for which the change in layer-to-space
transmittance across the layer is ~ zero.  This occurs when either the layer effective
transmittance is ~ unity, or when the layer-to-space transmittance above the layer is ~ zero.
Therefore, the data going into the regression is not all of equal importance to the final
accuracy of radiative transfer calculations made with the model.  We found it useful to
weight the data in terms of both its effective layer optical depth as well as the total optical
depth of all the layers above the layer under consideration.  

The spectral dependence of the fitting errors are shown in Fig 3.2.4 and a histogram
of these errors in Fig 3.2.5.  The errors are calculated with respect to the regression profile
set, comparing the RMS errors between the brightness temperatures of input data and the
AIRS PFAAST model calculated values.
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Errors in the AIRS PFAAST Model calculated for TIGR, a large independent
profile set, are shown in Figures 3.2.6 and 3.2.7 and are very similar to those shown in
Figures 3.2.4 and 3.2.5. In general the RMS errors are at or below the estimated signal
noise for AIRS  and spectroscopic errors.  As previously mentioned, the largest errors are
generally associated with either low altitude water or are inside the strong ozone band near
1100 cm-1.
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 4. Mathematical description of the Core retrieval algorithm

The AIRS Team Core Algorithm has two major goals:

• Meet the NOAA operational requirements.
• Meet the EOS science requirements.

The NOAA operational requirements are met by the first three algorithm steps:
microwave first guess, first pass cloud clearing, and the NOAA first product see (figure
4.1).  The EOS requirements are met by the second pass cloud clearing and the final
retrieval, as illustrated in figure 4.1.

In this section both the underlying physics and the algorithms used to deconvolve
the measurements into geophysical parameters will be described.  Many different types of
retrieval methodologies can be applied to this problem with advantages belonging to each
type.  In general we can classify the approaches into two types: 1) pre-computed Empirical
Orthogonal Function (EOF) or regression methods and 2) physically-based techniques
which match measured and calculated radiances and iterate until the match is within the
expected signal-to-noise.  Approach 1 is the fastest methodology because all the radiative
transfer calculations are done off-line.  The first approach is used by NOAA to produce a
rapid and accurate estimate of the geophysical parameters which they subsequently refine
by a rapid physical retrieval step to meet NOAA operational time constraints.  To produce
the final product, a more sophisticated physical retrieval, which includes the use of a scene
dependent noise covariance matrix, that allows for further refinement of the products and
predicted error estimates on a case by case basis.

There are also two approaches to the infrared cloud clearing problem: 1) account for
the effects of clouds in the observed radiances and 2) eliminate the effects of clouds from
the observed radiances.  The method chosen for the AIRS Team algorithm is approach 2
which has had a long and successful application to current and previous generations of
temperature sounder measurements.  (Approach 1 will be examined as a research product
and is not described in this document.

The cloud clearing methodology assumes very little about the radiative properties of
the clouds.  The only assumption is that for a given channel, a given cloud formation
behaves the same in all fields of view.  To the extent that a cloud formation behaves
differently in different fields of view, it is in reality more than a single cloud formation.
The cloud clearing methodology can handle many cloud formations in principle, and has
been tested for two cloud formations.  Should the assumption of cloud homogeneity
(between fields of view) for a given number of cloud formations break down, a
satisfactory solution will not be found and the profile will be rejected.

The final product algorithm does not attempt to solve for cloud properties simultaneously
with the temperature and moisture profile because errors in the cloud properties (radiative
properties of clouds can behave in a very complex way) will propagate into errors in the
other retrieved properties.  We first obtain clear column radiances in a way that does not
require knowledge of the detailed radiative properties of the clouds, then obtain solutions
for other geophysical parameters, and then retrieve cloud properties.
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Overview
The approach the AIRS team has taken to meet the very stringent temperature

accuracy constraint of 1K RMS Tropospheric error in 1 km increments is to provide
multiple retrieval strategies, designated as products. A simplified chart is presented in
figure 4.1 that describes the basic flow of the AIRS Team Algorithm design.  

• The main objective of the microwave initial guess algorithm (section 4.1) is to
characterize the atmospheric column in terms of precipitation and cloud liquid water
which are used in the cloud-clearing process throughout the core algorithm retrieval.

• The NOAA first product algorithm (section 4.2) has two objectives: (1) delivers the
initial guess using in the final product algorithm and (2) within three hours of
observations, deliver to NOAA the retrieved surface and atmospheric data required for
operational weather forecasts.

• The final product algorithm (section 4.3) delivers all the AIRS/AMSU/HSB Core
Products as defined in this document. The final product algorithm is a totally new state
of the art algorithm developed for a high signal to noise instrument with many
channels.  The algorithm takes great care to describe all sources of channel noise
(defined as the error in the difference between observed and computed brightness
temperatures), especially errors due to cloud clearing.  The algorithm then finds
solutions which best match these radiances, given the noise covariance matrix, with no
explicit consideration given to the estimated accuracy of the first guess, or the extent of
deviation of the solution for the first guess.  The algorithm has been shown to have
only a very weak first guess dependence, and does not require considerations or
coefficients which depend on location or season.  In addition, the algorithm produces
error estimates for all products, including clear column radiances, on a profile by
profile basis. The final product algorithm is not dependent on the NOAA product, but
can use either the microwave product, the NOAA product, or the NOAA regression
guess, as its first guess.  The final retrieval is only weakly dependent on the first guess
used.

During the simulation testing (described in Section 5.2) and during the first phase
of instrument checkout the algorithm will be streamlined into its most robust and efficient
form. The mainstay of the algorithm design process is the use of simulated data.
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4.1 Microwave Initial Guess Algorithm (Rosenkranz/Staelin)

The microwave initial guess profile retrieval algorithm will derive temperature,
water vapor and non-precipitating cloud liquid water profiles from AMSU/HSB brightness
temperatures.  It is intended to provide the starting point for the AIRS cloud-clearing and
retrieval. This is an iterative algorithm in which the profile increments are obtained by the
minimum-variance method, using weighting functions computed for the current
temperature and moisture profiles with the rapid transmittance algorithm described in
Section 3.1. A block diagram is shown in Figure 4.1.1.

The input vector of brightness temperatures is accompanied by an input validity
vector whose elements are either one or zero.  This provides a way of handling missing or
bad data.  Prior to the retrieval, the presence of rain in the field of view should be tested for,
using the output of the precipitation algorithm.  If the rain exceeded some threshold, the
lower tropospheric channels could be excluded from use in the retrieval by setting their
validity flags to zero.

Definition of the Initial Profiles
Two options are allowed for the initial guess; one is a climatological input and the

other is a Kalman-type guess.  The Kalman-type first guess uses a previously retrieved
(from AIRS/AMSU/HSB) temperature profile ˆ ( )T d  at a distance d and a model for the
horizontal temperature autocorrelation function ρ(d); the minimum-variance initial profile
at d = 0 is then

˜ ( ) ( ) ˆ ( )T T d T0 1= − +α α (4.1.1)

where <T> is the global mean profile and α  = 1-ρ(d).  Previous studies (e.g. Briancon,
1986) have shown that for distances d less than a few hundred km, a reasonable model is
ρ(d) = exp(-d/L), where L is a scale length that can vary with altitude, climate, season, and
direction.  However, L = 1000 km is a typical value for temperature.  With the spacing d =
85 km in a previous AIRS simulated data set (see section 3.1.3.a), the value of α was set to
0.08 for temperature.  Currently α  = 1 is used for relative humidity (i.e., no correlation).
These values have not been optimized.

Cosmic Background Brightness Temperature
Planck’s equation for radiant intensity is a nonlinear function of temperature.

However, at microwave frequencies, the physical temperatures encountered in the earth’s
atmosphere lie at the high-temperature asymptote of this function.  Hence, as discussed by
Janssen (1993), brightness temperature can be used as a surrogate for radiance in the
equation of radiative transfer, within an accuracy of a few hundredths of a Kelvin.  The
only exception to this statement occurs with the cosmic background, which must be
assigned an effective brightness temperature at frequency ν of

ΘC  =  (hν/2k) (ehν/kTc + 1) (ehν/kTc - 1)-1, (4.1.2)

instead of its actual temperature Tc = 2.73K, in order to linearize Planck’s function.
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Estimation of Surface Brightness
From the window channels of AMSU-A, an estimate of the surface brightness ΘS,

which is the product of the surface emissivity and surface temperature, is obtained by
correcting the measured brightness temperatures Θ* for atmospheric attenuation and
emission due to oxygen and water vapor. This correction is done by computing τ, the one-
way transmittance of the atmosphere; Θdirect, the component of brightness temperature
emitted from the atmosphere on a direct path to space; and Θsky, the sky brightness
temperature as observed from the surface.  The  ‘measured’ surface brightness is given by:

ΘS*  =  [(Θ* - Θdirect) /τ -  Θsky] / (1 - Θsky/TS) (4.1.3)

in which TS  is the surface temperature from the initial profile.  The four-parameter model
of Grody (1988):

ΘS   = [To + (ν/νο)
s Τ∞] / [1 + (ν/νο)

s], (4.1.4)
is used to represent the surface brightness spectrum.  If the slope of surface brightness
between 31 and 50 GHz is positive, or if the surface brightness at 31 GHz is less than 180
K, then the surface is categorized as a wet scatterer.  In this case, s = 1.2 and T∞ = 0.93 TS.
Otherwise, the surface is categorized as frozen; then T0= 0.93 TS and ν  0 = 31.4 GHz. The
frequency ν 0  is typically 31 - 33 GHz for ice and snow (Grody, 1988) but the use of
channel 2’s frequency simplifies the equations.  The model is based on aircraft and ground-
based measurements and theoretical calculations for nadir view and may be revised after
experience with AMSU-A and -B data from NOAA satellites.

With two of the four parameters fixed and ΘS given at 31 and 50 GHz, Eq. (4.1.4)
is solved for the remaining two parameters. The algorithm then computes ΘS for the
sounding frequencies that are sensitive to the surface.  If ΘS (31 GHz) < 250 K, an
adjustment to the initial water vapor column density is computed as

RH2O  =  1 + ln[(TH2O  -  ΘS1) / (TH2O - ΘS1*)] / 2β1 (4.1.5)

where ΘS1 is the surface brightness temperature at 24 GHz calculated from Eq. (4.1.4),
ΘS1* is the “measured” value, β1 is the one-way water vapor opacity at 24 GHz through the
atmosphere, and TH2O is the vapor-weighted mean atmospheric temperature.  The
atmospheric correction is then recomputed for 24 to 50 GHz with the water vapor profile
multiplied by RH2O.  The equations are iterated until

    3
∑   [(ΘSi*  -  ΘSi) τ i

2 / Ni]
2  <  3, (4.1.6)

    i=1
where τ i is the computed one-way atmospheric transmittance for channel i, and Ni is the
RMS noise level of channel i.  If the number of iterations exceeds a preset limit, an error
code is returned.

Treatment of the Surface Temperature
If ΘS were divided by surface temperature TS  to obtain emissivity for use in the

temperature profile retrieval, then an error due to the variance of the a priori surface
temperature would be introduced.  Instead, the equation of radiative transfer is written in
the form

Θ = Θdirect +τ (ΘS + Θsky - Θsky ΘS / TS)  (4.1.7)

where Θ is the brightness temperature emitted from the top of the atmosphere.

The atmospheric temperature vector is augmented by TS, which is considered to be
distinct from the air temperature near the surface.  The measured Θ's used in the
temperature profile retrieval are the 11 oxygen-band channels of AMSU-A, not including
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the 50.3 GHz channel (which was used to obtain ΘS).  The sensitivities of the measured
Θ's to the elements of the temperature profile vector constitute the observation matrix.  The
elements of this matrix corresponding to the atmospheric part of the temperature vector are
given by the atmospheric weighting functions.   The elements corresponding to TS are
obtained by partial differentiation of Eq. (4.1.7):

∂Θ/∂TS =τTsky ΘS /TS
2  (4.1.8)

The dependence on TS is nonlinear here, because ΘS is considered to be a known input.

The covariance of the temperature vector is also required by the estimation
algorithm described below.  The atmospheric covariances were obtained from the TIGR
data set (Chedin et al., 1985).  The difference between TS and the air temperature near the
surface (T1013) is assumed to have zero mean and standard deviation of 4 K.  Thus, TS has
a larger variance, by 16 K2, than T1013, but its covariances with other levels are equal to
those of T1013.

Estimation of the Temperature Profile

Given the initial profile T̃, the estimated profile is to be determined from a vector
Θ* of observed brightness temperatures, which for small difference profiles T- T̃ is related
to the true profile T by

Θ Θ* ( ˜ ) ( ˜ )[ ˜ ]= + − +T T T T eW (4.1.9)

in which Θ( T̃) is the brightness temperature vector that would theoretically be emitted
from the atmospheric profile described by T̃ and the rows of the matrix W( T̃) are
weighting functions, whose elements are in general dependent on the profile; e represents
unknown measurement errors.  Although not explicit in equation (4.1.9), the weighting
functions in the microwave band also depend on ΘS, on surface pressure, on humidity, and
at very low pressures on the magnetic field.  If the validity of a channel is zero, then the
row of W corresponding to that channel is set to zeros.  The dimensions of the matrix
remain the same.

The new, minimum-variance estimate of T is obtained by Newtonian iteration
(Rodgers, 1976, Eq. 101)

ˆ ˜ ˜ ( ˆ )T T T Xn
t

n= + −R WT 1           (4.1.10)

where R̃T  is the covariance matrix of  T T− ˜ , X is the solution vector to

W R( ˆ ) ˜ ( ˆ ) ( ˆ ) ( ˆ ) ˆ ˜*T T X T T T Tn T
t

n e n n n− − − − −+[ ] = − + −[ ]1 1 1 1 1W R WΘ Θ  (4.1.11)

and Re is the (normally diagonal) covariance matrix of e.  Superscript t indicates transpose
and ˆ ˜T T0 = . Re includes the effects of surface brightness uncertainty and instrument noise.
Iteration of Eqs. (4.1.10) and (4.1.11) stops when one of the following conditions is met :
(1) the estimate T̂n meets the closure criterion

NB

∑    [Θi* - Θi ( T̂n ) ]2 / NE∆Ti
2  ≤  NB,            (4.1.12)

i=1
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where NE∆Ti is the instrument noise on channel i and NB is the number of valid elements
in Θ*; or (2) when successive computations of the left side of (4.1.12) change by less than
1% of the right side; or (3) when the number of iterations exceeds a preset limit, currently
8.

Estimation of Relative Humidity and Clouds
This algorithm is based on retrieval methods described by Wilheit (1990) and Kuo

et al. (1994).  Retrieval of RH uses the four channels of HSB and the 89 GHz channel of
AMSU-A.  In the present algorithm, the HSB measurements are averages in 3 x 3 spatial
arrays which aproximate the AMSU-A field of view.  The measurements of brightness
temperature  are a result of the vertical profile of atmospheric opacity relative to
temperature in the atmosphere.  To distinguish between opacity, at a given altitude, due to
water vapor and opacity due to liquid water, it is necessary to introduce some a priori
information or constraint.  For this purpose, cloud coverage is parameterized as in the
stratiform condensation model of Sundqvist et al. (1989), where a relative humidity
threshold determines the onset of condensation.  If the instrument had infinitesimal
horizontal resolution, an appropriate threshold would be 100% relative humidity.
However, it is assumed that the condensation process is not spatially resolved, hence the
threshold is less than 100%.  Currently, the threshold is

RH
land

watercth =
−
−





75

80

%

%
 (4.1.13)

which is the same as in NCEP’s Eta model, which was used to generate the simulation
data.  It is anticipated that these thresholds will be adjusted after experience with AMSU-B
data.

The RH profile stored by the algorithm has a composite definition.  When RH is
less than 100%, it is interpreted as the relative humidity of the    clear    part of the field of
view.  (If RH ≤ RHcth, this is the entire field.)  Within the cloudy part of the field, the water
vapor profile is saturated.  Hence, the average vapor density in the field of view is

  ρs  RH/100,                                               if RH ≤ RHcth,

  ρv  =    ρs  [(1 - b) RH/100 + b]                                if RHcth < RH ≤ 100,  (4.1.14)
           ρs                                                              if RH ≥ 100,

where ρs  is the saturation value of vapor density, and

  b = (RH - RHcth) / (100 - RHcth). (4.1.15)

The liquid water density ρL averaged over the field of view is assumed to be given by

   0                                                  if RH ≤ RHcth,
ρL  =       (4.1.16)
    CL ρS b                                         if RH > RHcth,

where CL is a preset constant, currently 0.04.  In this way, RH (combined with ρS, which
depends only on the temperature profile) serves to define both the vapor and cloud liquid
water density profiles.  Note that RH can take values > 100 in cloudy regions.

The saturation vapor density is computed from the retrieved temperature profile.
Saturation vapor density is calculated with respect to liquid water (by extrapolation) even
when the temperature is below 273 K, because ice clouds are not considered within the
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context of this algorithm.  (Absorption from ice is much less than from liquid water, and
scattering is not included in the radiative transfer formulation.)  This algorithm therefore
allows supercooled liquid water and water vapor greater than the saturation value over ice.  

Measured brightness temperature Θ* is related to the RH profile by

Θ Θ* ( ˜ , ˆ ) ( ˜ , ˆ ) ˜= + −[ ] +RH T RH T RH RHRHW e  (4.1.17)

where Θ( ˜ , ˆ )RH T  is a computed brightness temperature vector and the matrix

WRH RH T( ˜ , ˆ )has elements which for a given channel and pressure layer are equal to

WRH(RH,T)  =  ∂Θ/∂κ • (∂κ/∂ρv • ∂ρv/∂RH + γ ∂ρL/∂RH), ( 4.1.18)

where κ represents the opacity of the layer and γ = ∂κ/∂ρL.  The rapid transmittance
algorithm computes the coefficient γ in the small-droplet (Rayleigh) approximation.
Hence, it is intended to be applied only to non-precipitating cloud situations.  A quadratic
model is used to compute the opacity of water vapor:

κ = β1 ρv + β2 ρv
2 + other contributions; (4.1.19)

hence

∂κ
∂ρ

β β ρ
v

v= +1 22  , (4.1.20)

where

β β ρ β ρ1 2= ( ) −˜ , ˆ ˜ ,v vT (4.1.21)

β β ρ2 = d d v/ . (4.1.22)

The coefficients β and dβ/dρv are computed by the rapid transmittance algorithm using the
temperature profile retrieval and the initial moisture profile.  Recomputation on each
iteration is unnecessary.  As a consequence of (4.1.14-16) ∂ρv/∂RH and ∂ρL/∂RH depend on
RH as follows:

      ∂ρv  ρ S /100,                                                          if RH ≤ RHcth,
      —      =    .02 (100-RH) ρS / (100 - RHcth),                  if RHcth < RH ≤ 100,
      ∂RH   0                                                                     if RH > 100,

(4.1.23)

      ∂ρL  0 ,                                                                  if RH < RHcth,
      —      =    CL ρS / (100 - RHcth),                                        if RH ≥ RHcth, (4.1.24)
      ∂RH 

The estimate of the RH profile is obtained by iteration of equations similar to
(4.1.10) and (4.1.11), except that Eyre’s (1989a) method of damping is used to avoid large
relative humidity increments, because of the nonlinearity of the problem:

ˆ ˆ ˆ ˜ ˜ ˆ , ˆRH RH RH RH R RH Xn n n RH n RH= − −[ ] + ( )− − −1 1 1δ δ  W  T  RH
t (4.1.25)
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in which R̃RH is the a priori covariance matrix of RH RH− ˜ , XRH  is the solution vector
to

W RH T R RH R RHRH n RH n e n
ˆ , ˆ ˜ ˆ ˆ ˆ , ˆ

ˆ , ˆ ˆ ˜ ,

*
− − −( ) ( ) +[ ] = − ( )

+ [ ]
1 1 1  W ,  T  X  T  

 W(RH  T) RH  -  RH

RH
t

RH

n-1 n-1

δ

δ

Θ Θ
(4.1.26)

and

δ =
− ( ) ≤





−1 10

0 1

1   T  K for all i,

 otherwise.
 i

*if RHi nΘ Θ ˆ , ˆ

.
(4.1.27)

Here δ is a scalar rather than a matrix as in Eyre’s paper.  For the moisture channels, the
measurement error covariance R e is the sum of contributions due to surface brightness
uncertainty, instrument noise, and a diagonal error of (1.5 K)2 which approximately
represents errors in Θ( ˜ , ˆ )RH T  resulting from errors in the temperature profile retrieval.
The convergence criterion is similar to the temperature algorithm.  Because convergence is
determined from the brightness temperature residuals, which in turn are computed using
the vapor and liquid column densities, the role of RH in this algorithm is only to introduce
the a priori statistics and constraints.

There is a discontinuity in WRH(RH,T) at RH = RHCTH due to eqs. (4.1.23-24).  To
compensate in an approximate way for this effect, when RH crosses the RHCTH threshold
in the positive direction on any iteration, the increment of RH above RHCTH is divided by 5.
There is no discontinuity at RH = 100.  After each iteration, the water vapor and liquid
water profiles are computed from the new RH, using (4.1.14-16).  Subsequent iterations
then use the appropriate absorption coefficient for liquid or vapor.  Finally, the estimated
R̂H profile is limited by zero from below and from above by a value which converts to
0.01 g/cm2 liquid column density, per layer.  This latter value is intended to approximate
non-precipitating cloud densities, and hence it will tend to leave large brightness
temperature residuals in situations of precipitation, and expecially when scattering is
occurring.  If the left side of eq. 4.1.12, computed for the five moisture channels, is greater
than a preset threshold value, then the ice scattering flag will be set at all altitudes for which
clouds are present and the temperature estimate is below 273 K.  On the basis of
experience with SSM/T2 data, the scattering threshold is currently set at 500.
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inputs: meas. brightness temperatures,  secant of incidence 
angle, location, surface pressure, prior profiles of temperature 
and water vapor, covariances of temperature and humidity

initialize profiles

get magnetic field from model

FIGURE 4.1.1. MICROWAVE INITIAL-GUESS ALGORITHM.
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4.2 First Product -- (Goldberg/McMillin)

The cloud clearing/retrieval system supplied by NOAA provides a “first product”
of  level 1B radiance, and level 2 surface, temperature, and moisture parameters using
combined InfraRed(IR) and MicroWave(MW) measurements from the
AIRS/AMSU/HSB instrument suite.  The system produces the following outputs: (i)
cloud cleared radiances for the entire AIRS spectrum; (ii) retrieved temperature and
moisture profiles; (iii) retrieved surface temperature; and, (iv) retrieved IR and MW surface
emissivity and reflectivity.  Both the first guess and physical retrievals are produced for (ii)
& (iii), while currently only a first guess retrieval is produced for (iv).    These products
provide a first solution to which additional adjustments are made by a final product system
(described in Section 4.3).

The “first product” system is composed of three major components:

1. Cloud clearing procedure that produces clear column AIRS radiances in
cloud contaminated fields of view

2. A regression procedure that produces first guess retrievals from
AIRS/AMSU/HSB observations

3. A rapid physical retrieval procedure to produce retrievals from
AIRS/AMSU/HSB observations using the output from (2) as an initial
guess.

Each of these components will be discussed in detail below.

Level 1 Cloud Clearing Algorithm
The function of cloud clearing is to obtain clear column (cloud cleared) AIRS

radiances from partially cloudy ones so that the retrieval process can be applied to the cloud
cleared radiances. The basic approach of infrared radiance cloud clearing, as introduced by
Smith (1968) as the N* technique, and by Chahine (1970, 1974) as the Eta technique, is an
approach in which cloudy information in “adjacent pairs” are used to extract clear
radiances. NOAA has been developing and using cloud clearing procedures based on the
N* technique (McMillin and Dean, 1982) in its TOVS retrieval operations. The cloud
clearing technique used for AIRS/AMSU/HSB has several important modifications from
the current approach used in TOVS operations. The modified cloud clearing procedure is
capable of utilizing the AIRS high spectral resolution data and operating in the presence of
two layer gray clouds.

NOAA’s cloud clearing technique is composed of (1) an eigenvector noise
reduction of observed AIRS radiances, (2) an AMSU regression estimation of AIRS
driver channels, and then (3) a two-layer cloud clearing based on quantities calculated from
the two previous steps. To introduce the entire notion in a more logical way, fundamental
concepts are discussed first and each of the steps is laid out as the discussion progresses.

Fundamental Concepts of NOAA Cloud Clearing
In the simulation study, two layer, non-overlapping clouds are present in the

observational FOV. The clouds are assumed to be gray having infrared emissivities
independent of frequency. Under these assumptions, the observed infrared radiance of any
cloudy channel at frequency ν is expressed as:
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Rν = ( 1 - α 1ε1 - α 2ε2 ) R
ν

c + α 1ε1 R
ν

o1 + α 2ε2 R
ν

o2
(4.2.1)

where Rν
c denotes the clear column radiance at wavenumber ν, R ν

o1 denotes the overcast
radiance if the first (lower) cloud covers the entire field of view, and R ν

o2 denotes the
overcast radiance if the second (higher) cloud covers the entire field of view. In Equation
(4.2.1) α 1, ε1 and α 2, ε2 are the cloud fractions and cloud emissivities of the first and
second clouds, respectively. Note that Equation (4.2.1) satisfies not only cloudy channels
affected by both clouds but also the channels affected by one cloud or even clear channels.
For example, if the weighting function peak of one channel is between the lower and higher
clouds, and therefore only contaminated by the higher cloud, then overcast radiance of the
channel for the low cloud is just the clear radiance (Rν

o1 = Rν
c ) and the equation degrades

to a single cloud formation equation.

By rewriting Equation (4.2.1) and defining variables

R’ν = Rν - Rν
c ,

R’ν
o1 = Rν

o1 - R
ν

c , (4.2.2)

R’ν
o2 = Rν

o2 - R
ν

c ,

we have following equation:

R’ν = α 1ε1  R’ν
o1  +  α 2ε2  R’ν

o2 (4.2.3)

Now if we have three channels with frequencies ν 1, ν 2 and ν 3 , Equation (4.2.3)
may be written for each of the channels as follows:

R’1 = α 1ε1  R’1
o1  +  α 2ε2  R’1

o 2 (4.2.4)

R’2 = α 1ε1  R’2
o1  +  α 2ε2  R’2

o 2 (4.2.5)

R’3 = α 1ε1  R’3
o1  +  α 2ε2  R’3

o 2 (4.2.6)

where the superscripts 1, 2 and 3 represent the corresponding channels with frequencies
ν1, ν2 and ν3, respectively. Equations (4.2.4), (4.2.5) and (4.2.6) indicate that the observed
radiances of the three channels lie on a plane that is defined by the three points (ε1R’1

o1,
ε2R’1

o2 ),  (ε1R’2
o1, ε2R’2

o2), and (ε1R’3
o1, ε2R’3

o1).  The  radiance for one channel can
be expressed as a linear combination of the radiances at the other two channels as:

R’1  = a R’2   +  b R’3              (4.2.7)

where a and b are constants.  Combining Equations (4.2.2) and (4.2.7) gives the following
equation:

R1  = a R2   +  b R3  + c (4.2.8)

where c is determined by an arbitrary point in the plane defined by Equation (4.2.7).  R’ i
o 1

and R’i
o2 in Equation (4.2.7) as well as a, b and c in Equation (4.2.8) are fixed once the

two cloud heights are defined. Equation (4.2.8) shows the equation for the plane defined in
three dimensional space for several fields of view with the same low cloud height and



AIRS Team Level 2 Algorithm Theoretical Basis Document

Ver 1.7 18 Sept 199739

same high cloud height but varying cloud fractions for the two non-overlapping cloud
formations. Therefore if we can (1) determine the relationship among the three channels
(i.e. find constants a, b and c), and (2) determine clear column radiance for two of the three
channels (e.g. R 2

c and R3
c),we can determine the clear column radiance of the third

channel from Equation (4.2.9).

R1
c = a R2

c
   +  b R3

c
  + c (4.2.9)

Values of a, b, and c are found by taking the 9 values for a 3 by 3 array.  These 9
measurements give 9 values of  R1

 , R
2 , and R 3 , resulting in system of 9 equations for

the 3 unknowns (a, b, and c).  The solution is obtained by subtracting the mean values and
doing a least squares solution for a and b.  In this case, the expansion is about the mean of
the values of the 9 samples since the clear values are not known.  The value of c, is given
by
                  __      __       __

c = R1 - a R2  - b R3                       (4.2.10)

where the bars represent average values.

In NOAA’s two layer cloud clearing technique, two AIRS channels ν 2 and ν 3 are
selected as driver channels to derive clear column radiance for any other channel R1

c. As
expressed in Equation (4.2.9), R 2

c
  and R 3

c are necessary for calculating R1
c, therefore

one of the criteria for selecting ν2 and ν 3 is that there should be an easy and accurate way
to determine R2

c
  and R3

c. Once the driver channels are selected, the relationship between
these drivers and any other channel ν 1, as expressed in Equation (4.2.8), needs to be
determined so that Equation (4.2.9) can be used with knowledge of R 2

c
  and R3

c. In the
following sections, procedures for calculating cleared radiances for driver channels,
selecting drivers, and determining the relationship between the driver channels and the
other channels will be presented. Finally, other important issues related to improving cloud
clearing accuracy will be discussed.

Obtaining Clear Radiances for Driver Channels
In the preliminary version of NOAA’s cloud clearing algorithm, there are two

methods to determine driver channel clear radiance R 2
c

  and R3
c: (1) Use regression to

estimate AIRS drivers from AMSU measurements making use of AMSU’s ability to
penetrate clouds; (2) Integrate retrieved geophysical data to obtain AIRS drivers. Both
methods are used in the system depending on the resources available and the steps in the
process.

AMSU regression is used to perform the initial cloud clearing since clouds are
fairly transparent to microwave radiation and there is no other source of information about
R 2

c
  and R 3

c
 . Sources of error in the cloud clearing include AMSU instrumental noise,

cloud liquid water contamination of the microwave measurement, microwave emissivity
and regression uncertainty. The different surface response of the two instruments is a
major source of error. Infrared and microwave emissivities and reflectivities respond
differently to different surfaces (vegetation, sand, water etc.). These differences will be
reflected in the regression uncertainty and eventually contribute to the cloud clearing error.

A simulated training data set of 12000 AIRS/AMSU collocated measurements
covering all seasons is used to calculate regression coefficients to estimate AIRS clear
radiances from AMSU brightness temperatures. In principle, AMSU temperature channels
that are minimally affected by water vapor and surface contributions are the best candidates
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in predicting AIRS drivers, which are preferably also temperature channels. When clouds
are present AMSU temperature channels are also contaminated by cloud liquid water
(Staelin et al., 1975 and Grody et al., 1980). To minimize these impacts, AMSU water
burden channels 1, 2 and 15 (which are sensitive to liquid water) are included in the
regression to correct the liquid water contamination in AIRS clear driver estimations.

Regression coefficients for predicting the brightness temperatures of the AIRS
driver channels from the AMSU measurements are calculated using the ‘Noise Guided
Stepwise Regression’ as described by McMillin (1991).

The AIRS forward calculation from the retrieval is used when a previous round of
cloud clearing/retrieval procedure is finished and there is need to iterate the procedure for
more accurate results. A forward model first calculates atmospheric transmittances for the
designated AIRS channels from geophysical profile data, then integrates the transmittances
with the Planck function to simulate clear column radiances (Susskind, et al., 1983). The
advantage of this method is that one can simulate and use the clear driver radiances without
instrumental noise in deriving other AIRS clear radiances. Of course, the condition of
using this method is that one has to have relatively accurate retrieval to start with. The
preliminary version of NOAA’s cloud clearing/retrieval algorithm has the option of one
iteration which yields a significant improvement in some of the test cases.

Selecting Cloud Clearing Driver Channels
The selection of driver channels depends on several factors. Because clear radiances

of the selected driver channels will later be used to derive clear radiances of all other AIRS
channels, a great deal of effort should be made to satisfy following conditions in the
selection process:

• There should be an easy and accurate way to calculate the clear radiances of the driver
channels.

• Ideally one of the drivers should have it’s weighting function peak at or lower than the
lowest cloud top so that it is sensitive to the low cloud as well as the high cloud.  The
other driver should have it’s weighting function peak close to the level of the second
cloud to maximize the independent response to the second cloud.

• Instrumental noise in the driver channel radiances should be minimized before deriving
the relationship expressed by Equation (4.2.8)

For an AMSU regression estimation of AIRS clear drivers, the regression
coefficients are calculated from the training AIRS/AMSU simulated observations. The
coefficients are then applied back to the training data set itself for dependent testing. Those
AIRS  temperature channels that yield the smallest RMS differences in the dependent test
are selected as clearing driver channels.

Multiple clouds in the FOV may have single or multiple cloud formations as
defined by Chahine (1977). Re-examining Equation (4.2.5) and (4.2.8) reveals that if
α 1/α 2 is constant among nine AIRS spots (i.e. the AMSU footprint has only one cloud
formation) then only one cloud clearing driver is needed. However, if there are two cloud
formations, the second driver channel is necessary to provide adequate information for
cloud clearing.

Currently, the simulated clouds are at or above 850 mb, AIRS channels with
weighting function peaks around 875-825 mb will be contaminated by both clouds
regardless of the cloud formation. Therefore an AIRS temperature channel in this region
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that yields a minimum RMS residual in the AMSU regression dependent test can always
be used as driver R2 to establish the relationship in Equation (4.2.8). The first clearing
driver is illustrated in Figure 4.2.1 with it’s weighting function plotted as a blackened solid
line.

FIGURE 4.2.1 CLOUD CLEAR DRIVER CHANNEL SELECTIONS

In two cloud formation cases, we need to find a second driver channel that is only
contaminated by the higher cloud. As shown in Figure 4.2.1, if the high cloud top is
around 600 mb the second driver should to have it’s weighting function peak around 600
mb as illustrated by the thin solid line. If the high cloud top is higher than 600 mb (as
illustrated by the broken box plot), the second cloud clearing driver should be the one
shown by the broken line. One consideration in selecting a second driver when two cloud
formations are present is that the second driver should maximize its response to the high
cloud only and consequently have a different behavior from the first driver. The best driver
channel to detect the high cloud would be one that differs from the first driver (in terms of
weighting function peaks) but is still at or under the high cloud so that it responds only to
the high cloud. This makes it independent from the first driver. Of course, the cloud
heights are not known.

To find the appropriate second driver, three candidates, having weighting function
peaks around 600 mb, 400 mb and 200 mb respectively, are examined. The dependency of
each of the candidate drivers upon the first driver is calculated in terms of the correlation
coefficient. An inter-comparison of these calculated correlations is conducted. The
candidate that is most independent of the first driver (i.e. gives the smallest correlation with
the first driver) is selected as second driver and its radiance is used as R3.
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In practice, the clearing drivers are not actually two channels but two groups of
channels having the same weighting function peak heights within the group, but distinct
weighting function peak heights between the groups. Radiances of channels in a group are
averaged and used in the cloud clearing as one driver channel in Equation (4.2.8). This
minimizes the instrumental noise. Table 4.2.1 lists selected groups of channels and their
weighting function peak pressures.

Weighting Function
Peak Pressure

875-825
(mb)

625-600
(mb)

425-400
(mb)

200-180
(mb)

725.693 725.391 704.539 688.003
Driver Channel 726.601 729.939 706.009 691.164

Frequency (1/cm-1) 728.116 739.428 706.303 691.452
749.978 742.207 721.472 693.183

 TABLE 4.2.1 SELECTED AIRS CLOUD CLEARING DRIVER CHANNELS

Each group has four channels (with weighting function peaks around the same
pressure) to be averaged. However, radiance values for different channels can have a wide
range even when they all correspond to the same atmospheric region due to the wavelength
dependence. A direct average of radiances would over emphasize channels with large
radiance values and neglect those with small radiance values. An effective average radiance
is introduced as a weighted average of radiances of different channels. The weight of each
channel is proportional to the inverse of the Planck function B(ν, T0) at a fixed temperature
T0 = 270K, and frequency of this channel.

Rave
eff = Σ w(ν) Rν (4.2.11)

w(ν) ∝  1 / B (ν, T0 ) and Σ w(ν) = 1 (4.2.12)

where w(ν) is the weight of the channel with frequency ν in the driver group.

Determining Cloud Clearing Relationship
Having selected the cloud clearing driver channels and obtained the driver clear

radiance, we will determine the relationship expressed in Equation (4.2.8). The
determination of values of a, b and c in Equation (4.2.8) from AIRS observations is
discussed next.

In the AIRS/AMSU simulation study, one AMSU footprint covers nine AIRS
spots each of which  has the same cloud type and height but different cloud fractions. For
any given AIRS channel, the only difference among the nine radiances is due to the
difference of cloud fractions and AIRS instrumental noise. The AIRS radiance is linearly
related with cloud fractions among the nine AIRS footprints. This linear relationship also
holds true for the cloud clearing driver effective average radiance which is a linear
combination of AIRS radiances. These assumptions in the simulation indicate that AIRS
radiances satisfy Equation (4.2.8) to within the AIRS noise level in an AMSU footprint.
Using the nine AIRS observations as samples, the relationship between any channel and
the two drivers (defined by a, b and c) can be found with a multiple regression.

Having determined the relationship between any AIRS channel radiance R1 and the
two clearing drivers R2 and R3, we can calculate the clear radiance R 1

c of any channel
from Equation (4.2.9) with the knowledge of the driver clear radiances R2

c
  and R3

c.
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AIRS Cloudy Radiance Noise Reduction
As in the N* technique, NOAA’s AIRS cloud clearing procedure is also sensitive

to AIRS random instrumental noise. In the relationship between the driver channels and a
given AIRS channel, coefficients a, b and c are affected when noise is present. Any error
in the relationship will be carried to clear radiances when applying Equation (4.2.9). Before
cloud clearing, any procedure that can reduce the observational noise level will be helpful in
calculating accurate values of a, b and c, and consequently will improve the cloud clearing.
An eigenvector analysis is introduced to reduce or remove the random factor (noise) in the
observation data.

In order to reduce the noise, the AIRS brightness temperature observations are
converted to an eigenvector expansion.  The 30 coefficients associated with the 30 largest
eigenvalues are kept and used to regenerate the radiances.  Since errors tend to be
associated with the smaller eigenvectors which are the ones that are ignored, this procedure
reduces the random errors in the reconstructed radiances.

Cloudy and Clearing Channels under Cloudy Conditions
An important fact about cloud contamination of infrared observations is that, even

in cloudy conditions, not all the infrared channels are affected by clouds. For example, if
one AIRS channel is sensitive to the upper portion of the atmosphere, and therefore not
contaminated by any low clouds, it should not be cleared if only low clouds are present. In
this case averaging the nine AIRS spot radiances for this channel is the best solution for
clear radiance. Clearing such a channel would only greatly amplify the noise. We therefore
need to determine if a channel is cloudy or clear before proceeding to cloud clearing.

As shown in Equation (4.2.1), if a channel is cloud contaminated its radiance must
be linearly related to the cloud fraction. In the simulation, and most likely in reality, the
cloud fractions in the nine AIRS spots are variable, hence, for any cloudy channel with
frequency ν the radiance standard deviation σ(ν) (= 1/3 √ Σ [Ri(ν)-Rave(ν)]2, i = 1,...,9)
over the nine spots must be greater than a threshold (currently half of the channel’s
instrumental noise level) to reflect the existence of variable cloudiness. Homogeneous
AIRS radiances over an AMSU footprint indicate the footprint is either clear or overcast
for this AIRS channel. The quantity σ(ν) can then be used to indicate cloud contamination
of any channel.

Weighting function peaks of all AIRS channels are pre-calculated and stored to help
decide if a channel should be cleared. All AIRS channels are ordered in terms of weighting
function peak pressures in an ascending sense. Cloud clearing proceeds from the bottom
channel to the top. Each channel is checked to see if :

σ(ν) > 0.5 NE∆R(ν) (4.2.13)

where  NE∆R(ν) is the noise equivalent radiance for that channel. If Inequality (4.2.13) is
true, this channel is cleared using Equation (4.2.9) and the next channel is considered. If
Inequality (4.2.13) is false, all nine AIRS radiances are averaged to get the clear radiance.
When the number of times Inequality (4.2.13) is false reaches 10, the cloud top is
considered to be reached and all the remaining channels are assumed clear and clear
radiances are calculated from averaging the nine radiances.
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First Guess Regression Procedure
NOAA/NESDIS uses an eigenvector global regression procedure to provide fast

and accurate initial guesses for temperature and moisture profiles as well as surface
emissivity and reflectivity using simulated AIRS/AMSU/HSB data.  It is assumed that all
independent AIRS radiances have been preprocessed by the cloud clearing module
described in the last section.  Following the approach of Smith & Woolf (1976),
eigenvectors from a brightness temperature covariance matrix, calculated over some
dependent training ensemble, are used as basis functions to represent the
AIRS/AMSU/HSB radiometric information.  Eigenvectors of covariance matrices are
commonly referred to as Empirical Orthogonal Functions (EOF’s) in the literature, a
convention that will be adopted throughout the remainder of this section.  Because of the
large number of channels measured by AIRS/AMSU/HSB, the eigenvector form of
regression is crucial for exploiting the information content of all channels in a
computationally efficient form.  By representing radiometric information in terms of a
reduced set of EOF’s (much fewer in number than the total number of instrument
channels) the dimension of the regression problem is reduced by approximately two orders
of magnitude.  Another advantage of using a reduced set of EOF’s is that the influence of
random noise is reduced by elimination of higher order EOF’s which are dominated by
noise structure.  It should be noted that if all EOF’s are retained as basis functions the
eigenvector regression reduces to the ordinary least squares regression solution in which
satellite measurements are used directly as predictors.  The mathematical derivation of the
EOF regression coefficients is detailed in the following sub-sections.

Generating the Covariance Matrix and Regression Predictors
A training ensemble of temperature, humidity, and ozone profile data are used to

generate brightness temperatures for all AIRS/AMSU/HSB channels.  The deviations of
the brightness temperatures from their sample mean are stored in the matrix ∆ΘTrain, a
matrix of dimensions [nchan x nsamp], where nsamp is the sample size of the training
data set and nchan is the total number of instrument channels.  The brightness temperature
covariance matrix from which the EOF’s are derived is then generated as follows:

Θcov = 
1

nsamp
∆ΘTrain(∆ΘTrain)

T (4.2.14)

 

where superscript T denotes matrix transpose and the matrix Θcov is a  square matrix of
order nchan.  The diagonal elements of  Θcov represent the variance of the respective
channel brightness temperatures while the off diagonal elements represent the covariance
between pairs of channels.   An eigenvector decomposition is performed on the matrix Θcov

giving:

Θcov = ΓΛΓ T (4.2.15)

where Γ is the [nchan x nchan] matrix containing the eigenvectors, or EOF’s, of Θcov in
it’s columns.  Λ is the diagonal matrix of eigenvalues, the first eigenvalue being the first
diagonal element, the second eigenvalue the second diagonal element etc.  The EOF’s are
ordered in terms of the amount of the total data variance each explains; the first explains the
most variance and each successive EOF explains progressively less of the total data
variance.  As discussed in the beginning of this section, some subset of the total number of
EOF’s is best for capturing the information content of the radiometric data while
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minimizing the effects of random measurement noise. For the purposes of notation let m
be the optimal number of EOF’s for describing the information content of the covariance
matrix from Equation (4.2.14).  Considering the large number and interdependent nature of
the AIRS/AMSU/HSB weighting functions it is reasonable to assume that m << nchan,
where m represents in some sense the number of independent pieces of information
available from the measurements.  Experiments with AIRS/AMSU/HSB simulated data
have shown m = 40 to be optimal for capturing the information content of the
measurements from these three instruments. Only insignificant improvements in retrieval
accuracy have been observed when using greater numbers of eigenvectors.  Once m is
determined from experimentation those EOF’s are used as basis functions to represent the
original brightness temperature information in terms of expansion coefficients commonly
referred to as principal components.  First we express ∆ΘTrain as an expansion of the
EOF’s as follows:

∆ Γ Γ ΓT a a aTrain
j

1
j

2
j

m
j

m= + + +~ ~ ~
1 2 L (4.2.16)

where ∆TTrain
j  is the jth column of matrix ∆Θtrain and a , a , ,a1

j
2
j

m
jL  are the corresponding m

principal components for the jth sample.  In order to solve Equation (4.2.16) for the
individual principal components recall that the EOF’s ~

,
~

, ,
~Γ Γ Γ1 2 L m  are mutually

orthonormal.  That is:

~ ~Γ Γi j

1   for i = j

0   for i j
• =

≠




(4.2.17)

where (• ) denotes the inner product of two vectors.  Using the condition of orthonormality
and the distributive property of the (• ) operator, each individual principal component is
expressed as:

a = T       i= 1,2, , m  and

                                j= 1,2, , nsamp
i
j

Train
j

i∆ Γ• ~
L

L
(4.2.18)

Generating the Regression Coefficients
A standard least squares regression technique is used to generate regression

coefficients using an a priori  training data base such  as an operational radiosonde match
file.  The following regression model is used to generate the coefficients:

∆V CATrain= (4.2.19)

where, ∆V  is the matrix of deviations of the predictants (temperature, moisture etc.) from
the training sample mean, ATrain is the [m x nsamp] matrix of principal components
calculated using Equation (4.2.18), and C is the [n x m] matrix of regression coefficients to
be solved for where n is the total number of predictants.  More specifically:
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∆V =
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1 1
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n n
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(4.2.20)

and,

A

a a a

a a a
Train

1
1

1
2

1
nsamp

m
1

m
2

m
nsamp

=
















L

M M M M

L

(4.2.21)

where, n = number of predictants (i.e. the number of temperature, moisture, and/or
emissivity/reflectivity points), nsamp = number of samples in the training set, m =
number of principal components used and bars indicate averages over the training sample
set.

The least squares regression solution of Equation (4.2.19) is:

C VA A ATrai
T

Train Train
T= −∆ ( ) 1 (4.2.22)

where the T superscript denotes matrix transpose, and the -1 superscript denotes matrix
inversion.

Applying the Coefficients to Independent Data
Once the coefficient matrix, C, is calculated from equation (4.2.22) the coefficients

may be applied to independent data using equation (4.2.19).  The matrix defined in
equation (4.2.20) would now contain deviations of the independent data from the training
sample mean.  Mathematically, the application process is:

$V = V + CAobs                                                        (4.2.23)

where $V is the [n x nobs] matrix of retrievals, V  the training level 2 vector from equation
(4.2.20), C is the [n x m] matrix of regression coefficients from equation (4.2.22),  and
A obs  is the [m x nobs] matrix of principal components calculated from the level 1B
observations.  Aobs is generated using equation (4.2.18) where ∆ΘTrain is replaced with
∆Θobs, the matrix of deviations of observed brightness temperatures from the training
mean.

Minimum Variance Physical Retrieval
The starting point of all physical retrieval algorithms is the definition of the radiative

transfer equation  to establish the relationship of  atmospheric and surface geophysical
parameters to the outgoing radiance that the instrument measures.     Given a set of
radiances, the objective of a physical retrieval algorithm is to find a  realistic solution of
geophysical parameters that will be consistent with those radiances.



AIRS Team Level 2 Algorithm Theoretical Basis Document

Ver 1.7 18 Sept 199747

In the InfraRed(IR) region of the spectrum the radiative transfer equation (RTE) for
a clear sky, plane parallel, homogenous atmosphere in Local Thermodynamic Equilibrium
(LTE) may be represented as:

R B T B T(P))
d p)

dp
dp + B Tsun) cos          (InfraRed)c

s s

surface 
emission
term

p= p

0

Atmospheric
Emission
Term

s
2

Reflected
Solar
Term

s

υ υ υ υ υ
υ

υ υ υε τ
τ

ρ τ θ= + ∫( ) (
(

(
1 24 34

1 24444 34444
1 2444 3444

  (4.2.24)

where R c
υ is the clear channel IR radiance at frequency υ measured by the satellite, Ts is the

surface skin temperature, T(p) is the ambient atmospheric temperature at pressure p, Tsun
is the blackbody temperature of the sun (assumed to be 5600K), Bυ(T) is the Planck
radiance evaluated at frequency υ  and temperature T, εν is the surface spectral emissivity,
ρν is the surface spectral reflectivity, τνs is the spectral transmittance from the earth’s
surface to space, and τν(p) is the spectral transmittance from pressure p to space.  A
reflected downward IR component has been omitted in equation (4.2.24) because of it’s
small magnitude when compared with other terms in the equation.

In the microwave(MW) region equation (4.2.24) must be modified for several
reasons.  First, at microwave frequencies the Raleigh-Jeans approximation holds and the
Planck function becomes approximately proportional to temperature.  Secondly, the
reflected atmospheric term (ignored in the IR) becomes large and significant whereas the
reflected solar term becomes negligible.  Lastly, the surface reflectivity in the microwave is
assumed to be specular and is therefore expressed as one minus the surface emissivity.
Incorporating these modifications, equation (4.2.24) is recast for microwave channels,

R T T(P)
d p)

dp
dp +(1- T(P)

d p)

dp
dp    (Microwave)c

s s

surface 
emission
term

p=p

0

Atmospheric
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s

s

υ υ υ
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υ
υε τ

τ
ε

τ
= + ∫ ∫123

1 2444 3444 1 24444 34444

(
)

(*

     (4.2.25)

where all terms which appeared previously in equation (4.2.24) have the same definition
except for R c

υ  which is now in units of brightness temperature, and the new variable,

τ υ
* (p) , is the two path transmittance from pressure p to the surface and back to space.

Notice that all references to the Planck function have been replaced by T (atmospheric
temperature) and the reflected solar term is replaced by the reflected downward
atmospheric emission term.

The retrieval methodology requires that equations (4.2.24) and (4.2.25) are
linearized about some a priori estimate.  This is accomplished by expressing R c

υ in
equations (4.2.24) and (4.2.25) as a function of the regression guess using a first order
Taylor expansion such that:

R R
R

V
(V -  Vc 0

k
k k 0

k=1

N

υ υ

∂
∂

= +∑ )
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where R 0
υ is the total integrated radiance for frequency υ  computed from the regression

solution using either equation (4.2.24) or (4.2.25), Vk and kV0 are the nth elements of the

solution and regression first guess geophysical parameter vectors, ∂
∂

R
Vk

is the incremental

change of the radiance with respect to a incremental change in a particular geophysical
parameter (e.g. Vk= temperature at 50 mb), and N is the number of geophysical

parameters.  The value of ∂
∂

R
Vk

is computed in a manner similar to Eyre (1989a) by

differentiating the numerical quadrature form of equations (4.2.24) & (4.2.25) with respect
to the geophysical parameters (see section “Computation of the Kernel Matrix”). Currently
the geophysical parameters solved in the physical retrieval include surface and atmospheric
temperature and moisture. The above equation is re-expressed in matrix notation as,

R = R A(V - V0 0+ ) (4.2.26)

where R represents the vector of clear satellite observations for all retrieval channels, R0

represents the vector of radiances computed from the regression first guess for all retrieval
channels, V and V0 represent the solution and regression first guess geophysical parameter
vectors, and A, commonly referred to as the kernel matrix, contains the partial derivatives
of radiance with respect to each of the individual geophysical parameters and for each of
the retrieval channels.  A minimum variance solution for V is employed in the retrieval
process of the NOAA Core Algorithm.  Minimum Variance has been used in the NOAA
TOVS operational retrieval system since 1988 (Fleming et. al., 1986; Goldberg et. al.,
1986).  There are an infinite number of ambient atmospheric states that will satisfy the
RTE to within the system noise (i.e. instrumental + cloud clearing + transmittance); the
minimum variance solution uses a priori constraints, in the form of a regression estimate
and covariance matrix of regression errors, to produce realistic atmospheric profile
solutions which minimize average squared error over an ensemble.  The iterative matrix
form of the solution used is (Rodgers, 1976):

{ }$ ( $ )V V + (A N A S ) A N (R - R )- A V Vn+1 0 n
T 1

n
1 1

n
T 1

n n 0 n= + −− − − − (4.2.27)

where $Vn+1  is the iterative estimate of the true profile of temperature or moisture (to be

retrieved), $Vn is the retrieved estimate of the true profile of temperature or moisture from
the previous iteration, V0  is the initial guess profile of temperature or water vapor mixing
ratio, R is the vector of satellite observed radiances, R n  is the corresponding vector of
radiances computed from the most recent iterative solution,  An is the kernel computed
from the most recent  iterative solution, N is the instrument noise covariance matrix, and S
is the estimate of the background error covariance matrix between the truth and the retrieval
estimate.  Superscripts T and -1 denote matrix transpose and matrix inversion, respectively.

Temperature/surface temperature and water vapor are retrieved separately rather
than simultaneously with the temperature retrieval preceding the water vapor retrieval.  The
temperature profile is retrieved first using channels selected from the 15µm and 4.3µm
bands that are relatively unaffected by water vapor.  By first improving the temperature the
subsequent H2O retrieval, based on the updated temperature information, will be more
accurate because the temperature component of the signal in the water vapor channels will
be better accounted for .  Both  retrieval steps can be iterated, however experiments with
simulated data have shown that quite often the initial guess departure from the truth  is in
the linear regime such that only one iteration is required.  
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Expressing the Retrieval Solution in more Computationally Efficient Form
The retrieval solution in equation (4.2.27) can be re-expressed in a more

computationally efficient form using eigenvector methods.  Because S in equation (4.2.27)
is a real symmetric matrix it may be written:

S T= ΓΛΓ                                                (4.2.28)

where Γ is an [n x n] orthonormal matrix, Λ is an [n x n] diagonal matrix, and superscript
T denotes matrix transpose.  Substituting equation (4.2.28) into equation (4.2.27) and
making use of the properties of eigenvectors it is easy to show that equation (4.2.27) can be
written in the following equivalent form,

∆ Γ Γ Γ Λ Γ ∆V = A N A + A N R - A V VT
n
T -1

n
-1 T

n
T -1

n 0 n( ) −( ){ }−1 ˆ (4.2.29)

The [n x n] matrix Γ  contains the n orthonormal ‘eigenvectors’ of S in it’s columns and
the diagonal matrix Λ contains the n ordered ‘eigenvalues’ of  S.  More specifically,
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(4.2.30)

where [Γ 1, Γ 2, ..., Γ n] are the n eigenvectors of S and [λ1, λ2, ... , λn] are the       
corresponding eigenvalues.

The dimensions of the matrix to be inverted in equation (4.2.29) can be reduced by
truncating the matrices of eigenvectors and eigenvalues.  Suppose that we choose to retain
m of the n eigenvectors ( m  < n ) then equation (4.2.29) is rewritten:

( ) ( ){ }∆ Γ Γ Γ Λ Γ ∆V = A N A + A N R - A V VT
n
T -1

n
-1 T

n
T -1

n 0 n
~ ~ ~ ~ ~ $γ
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−

1
(4.2.31)

where γ is a tuning parameter, and the definition of γ~Γ  and 
~
Λ−1  are as follows:
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(4.2.32)

Notice that the dimension of the matrix to be inverted in equation (4.2.31) is [m x m]
compared to the larger [n x n] matrix in equation (4.2.29).  In addition to reducing the
number of floating point operations,  truncating the eigenvectors may also filter out
unwanted noise in the retrieval process by excluding higher order terms which contain
spurious information.
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Settings for the tuning parameter, γ, and the number of eigenvectors retained, m,
are different for water vapor and temperature retrievals.  Experimentally determined values
for (γ, m) are currently set to (1.5, 30) for temperature, and (20, 20) for water vapor.

Computation of the Kernel matrix
The elements of the An matrix in Equation (4.2.31) are derived for IR and MW

channels using a quadrature form of equations (4.2.24) and (4.2.25).  As discussed, the
elements of An are derivatives of radiance (brightness temperature for MW) with respect to
individual geophysical parameters (e.g. 50 mb temperature, 500 mb water vapor mixing
ratio, surface temperature) from the most recent iterative solution.  We begin by writing
equations (4.2.24) and (4.2.25) in quadrature form using the trapezoidal rule of integration.
For the IR region the quadrature form of equation (4.2.24) is,

Rc B Ts s B T(p j B T(p j - 1 p j - 1 p j
j = 1

J

B Tsun) s
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(4.2.33)

where J represents the number of discrete pressure levels of the fast transmittance model,
pj is the pressure at the jth pressure level and all other quantities are as defined in equation
(4.2.24).  Similarly for the MW region of the spectrum equation (4.2.25) is expressed in
equivalent quadrature form,
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where τ τ
τυ υ

υ
* ( ) ( )

( )p p
pj

s
j

=
2

.  Equation (4.2.34) can be simplified by using notation for effective

transmittances which combine the upwelling and downwelling MW components of
radiance into a single term.  The  form of the simplified equation is as follows,
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where $τ  indicates the effective transmittance and is defined,
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(4.2.36)

Taking the derivative of equations (4.2.33) and (4.2.36), both with respect to temperature
and water vapor mixing ratio, gives the elements of An.  

Making the assumption that transmittance is independent of temperature the
temperature elements of An for IR channels are defined as,
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where J is the number of atmospheric levels and j = J corresponds to the lowest
atmospheric level, τ s is the atmospheric transmittance from the surface to space, τ k is the
atmospheric transmittance from the kth atmospheric pressure level to space, εs is the
surface spectral emissivity, and dB

dTk
is the derivative of the Planck function evaluated at

channel i and atmospheric temperature Tk.  Similarly for the MW region the definition of
the temperature elements of An are as follows,
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where the effective transmittance, $τ , is as defined above.

The water vapor elements of the An matrix for IR channels are defined as follows,
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where Btsun is the Planck function evaluated for channel i at the temperature of the sun, Bk

is the Planck function evaluated for channel i at the first guess level temperature Tk, θ is the
solar zenith angle, ρυ is the surface spectral reflectivity for channel i, qk is the initial guess
mixing ratio at level k, and all other terms are as defined in equations (4.2.36) and (4.2.37).
Assuming an isothermal atmosphere above the uppermost pressure level the definition of
the water elements of An  in the MW is as follows,
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The derivative terms in equation (4.2.40) are evaluated using the definition of effective
transmittance from equation (4.2.36),
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which after some manipulation reduces to the following form,
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The derivative of transmittance with respect to water vapor is given by:
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where uk, the precipitable water from the space to pressure level k, is calculated by the
following formula
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the derivative of precipitable water is given by,
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and the derivative of the natural log of transmittance with respect to precipitable water is,
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[Note:  τ0 ≡ 1 in the calculation of the above derivatives.]

The Instrument Noise Covariance Matrix N
The instrument noise covariance matrix, N, is a diagonal matrix whose non-zero

elements ( the diagonal elements ) represent the variance of the instrument noise for each of
the retrieval channels. Thus N is defined as:
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The diagonal values, [σ σ σ1 n
22

2
2, , ,L ], represent the noise of the n retrieval channels, and

all off diagonal elements (i.e. all interchannel covariances) are assumed to be zero.
Operationally N will include the total system noise and may include off diagonal elements.
The total system noise for each channel is due to the combined effects of measurement
noise, forward model inaccuracies, and calibration error.
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The Thermal and Moisture Covariance Matrix S
The retrieval parameter covariance matrix, denoted by S in the previous

mathematical description of the physical retrieval, should represent the expected error of the
background field.  As discussed in the First Guess Section, NOAA/NESDIS generates a
background field from a regression scheme which uses a large training data base to
estimate geophysical quantities from principal components derived from AIRS/AMSU
brightness temperature observations.  This same training data is used to estimate the
magnitude of expected background errors when the regression coefficients are applied to
independent data.  The coefficients, matrix C from equation (4.2.22), are applied back onto
the dependent training data as follows:

∆ ∆$V = C T (4.2.48)

where ∆ $V  is the regression retrieval of the dependent geophysical training data ∆V in
equation (4.2.20).  The covariance matrix, S, is then calculated as follows:

S =
1
m

EE  where E = V - VT, $∆ ∆ (4.2.49)

where S is an [n x n] matrix whose diagonal elements represent the expected background
variance of each of the predictants, and whose off diagonal elements represent expected
interlevel covariances amongst the various predictants.  

4.3 Final Product - (Susskind lead, Chahine)

Introduction

To satisfy the science requirements of EOS, a final adjustment is made to the
NOAA first product based on the difference between calculated radiances and cloud-
cleared radiances.  It is also in this part of the code that the cloud parameters, and the
research products (not described in this document) will be calculated.

When solving for a set of geophysical parameters, it is desirable to be able to
choose an appropriate set of parameters to solve for and select channels that are both
sensitive to those parameters and relatively insensitive to other parameters.  In general,
channels will be affected by more than one type of parameter.  For example, channels with
radiances sensitive to the water vapor or ozone distribution are also sensitive to the
temperature profile and often to the surface skin temperature.  Our approach is to solve
sequentially for the surface parameters, temperature profile, water vapor profile, and ozone
profile in that order.  In this approach, variables already solved for, used in conjunction
with first guess variables, are kept fixed when solving for the next set of variables.  Table
4.3.1 lists the variables solved for and the number of channels used in each step.  The
above order is chosen because channels can be selected for a given step that are relatively
insensitive to variables to be solved for subsequently.

A total of 222 AIRS channels, 12 AMSU A channels, and 4 HSB channels were
selected for use in the AIRS/AMSU retrieval algorithm.  Some of the surface parameter
sounding channels are also used in the water vapor or temperature profile retrievals.
Therefore, the total number of channels is less than the sum of the channels in column 2.
Likewise, the water vapor solved for in the ground temperature retrieval is subsequently
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updated in the water vapor profile retrieval step.  Therefore, the 238 channels are used to
solve for 39 different variables.

The general AIRS/AMSU retrieval algorithm does not require any field-of-view to
be cloud free (Susskind et al., 1996). The algorithm used in AIRS retrieval consists of the
following main steps: (0) Obtain an initial guess for the temperature, moisture, and ozone
profiles.  (1) Derive a first estimate of the cloud cleared radiances and channel noise
covariance matrix. (2) Retrieve surface parameters.  If necessary, the first guess and cloud
cleared radiances may be improved at this point and the surface retrieval may be repeated.
This loop ends the basic startup procedure.  (3) Retrieve temperature profile.  (4) Retrieve
water vapor profile.  (5) Retrieve ozone profile.  (6) Produce final cloud cleared radiance
estimates.  Repeat (2) - (5) starting with the new parameter estimates in place of the first
guess.  The general approach to solve for the parameters in steps (2) - (5) is in the form of
iterative constrained least squares solutions, one for each set of variables to be solved for.
The form of the equations to be solved is identical for each of the four steps.

Treatment of radiances in cloudy atmospheres

Three basic approaches used for accounting for effects of clouds in satellite remote
sensing are:  1) identify clear areas and only perform retrievals in those areas, with no
cloud correction needed; 2) use channel observations in adjacent potentially partially cloudy
scenes to reconstruct what the channel radiances would have been if the scenes were clear,
and use these reconstructed observations to determine geophysical parameters; and 3)
determine both surface and atmospheric geophysical parameters, as well as cloud
properties, from the radiance observations themselves.  An example of the first approach is
given by Cuomo et al.(1993).  Eyre (1989a, 1990) has used the third approach in
simulation by assuming an unknown homogeneous amount of black clouds at an
unknown
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      Variables Channels                 Frequencies
     Ground Temperature Retrieval

  Ts , ∆lnW , 8 spectral emissivity
function, 3 spectral bi-directional
reflectance functions

21
27

758 → 1235 cm-1

2170 → 2669 cm-1

    Temperature Profile Retrieval
13 layer temperature-
functions (trapezoids)

96
29
12

651 → 742 cm-1

2228 → 2501 cm-1
50.3 → 57.29  GHz

      Water Vapor Profile Retrieval
8 layer column density functions 30

4
790 → 2650 cm-1
150-183.31 GHz

     Ozone Profile Retrieval
5 layer column density functions 23 1001 → 1069 cm-1

     AMSU Temperature Profile Retrieval   

Ts m, ε , 13 layer temperature profile
functions

17
12

      666 cm-1- 676 cm-1
50.3 -  57.29 GHz

Total:  39 variables  238 channels (AIRS + AMSU)

TABLE  4.3.1.  VARIABLES AND CHANNELS

pressure, and attempted it with real TOVS data as well (Eyre, 1989b).  Our approach, like
that used in Susskind (1993), is of the second type and is an extension of that used by
Smith (1968), Chahine (1974), and Chahine (1977).  This approach utilizes satellite
observed radiances, Ri k, , corresponding to channel i and field-of-view k, made over
adjacent fields-of-view.  In this approach, there is no need to model the radiative and
reflective properties of the clouds.  The only assumption made is that the fields-of-view are
homogeneous except for the amount of cloud cover in K different cloud formations in each
field-of-view.  Ri,clr the radiance which would be observed if the entire field of view were
clear and   Ri,cld,l , the radiance which would be observed if the entire field of view were
covered by cloud formation   l , are therefore assumed to have the same respective values in
each field-of-view.  If the observed radiances in each field-of-view are different, the
differences in the observed radiances are then attributed to the differences in   αlk , the
fractional cloudiness for cloud formation   l  in field-of-view k.

Using the above assumptions, Chahine (1977) showed that the reconstructed clear-
column radiance for channel i, ˆ

,Ri CLR , can be written as a linear combination of the

measured radiances in the K+1 fields-of-view, R Ri i K, ,. .1 1+ , according to

ˆ . . . . . . ,, , , , , , , ,R R R R R R R Ri CLR i i i K k i i K k K i i= + −[ ] + + −[ ] + + −[ ]+ +( )−1 1 1 1 1 2 1 2η η η

(4.3.1)
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where η η1. . . K  are unknown channel independent constants, and K+1 fields-of-view
(FOV's) are needed to solve for K cloud formations.  The fields-of-view are ordered such
that FOV 1 is the clearest field-of-view based on observations in the 11 µm  window (the
field-of-view with the highest 11 µm radiances is assumed to be FOV 1) and FOV K+1 is
the cloudiest.  Thus η1 multiplies the largest radiance differences and ηK  the smallest.
Once η η1. . . K  are determined, Eq. 4.3. is used to produce the reconstructed clear column
radiances for all channels used in the retrieval process.  The reconstructed clear column
radiances are then used when solving for the geophysical parameters.  Susskind et al.
(1984), Susskind and Reuter (1985a) and Chahine and Susskind (1989) have successfully
used this approach with two fields-of-view, assuming one cloud formation, in the analysis
of HIRS2/MSU operational sounding data.  Chahine and Susskind (1989) show that
retrieval accuracy, verified by co-located radiosondes, does not degrade appreciably with
increasing cloud cover, for retrieved cloud fractions of up to 80%.  An analogous
assumption is made by NOAA/NESDIS in production of their clear column radiances
used in generation of operational HIRS2/MSU retrievals (McMillin and Dean, 1982).
Susskind and Reuter (1985b) have performed simulations with two cloud formations and
three fields-of-view for the AMTS instrument -- an earlier version of AIRS (Chahine, et
al.., 1984), used in conjunction with MSU.  We have developed a new methodology to
account for multiple cloud formations using the AIRS and AMSU instruments.  The
methodology to determine ηk  is first presented for a single cloud formation and then
generalized for use with multiple cloud formations.

Single cloud formation with two fields-of-view

For one cloud formation and two fields-of-view, the reconstructed clear-column
radiance for channel i from Eq. 4.3.1 is given by

R̂i,CLR = Ri,1 + η1 Ri,1 − Ri,2[ ] . (4.3.2)

Given the above mentioned assumptions, the value of η1 is independent of cloud spectral
properties and has the same value for all channels.  η1 can be written in terms of α1 and
α2 and has a unique value given by

η α
α α1

1

2 1
=

− , (4.3.3)

where α α1 2and  are the cloud fractions in each field-of-view (Chahine, 1974).  It is not
necessary to know α α1 2or  to determine η1.  

The determination of η is sequential and is done in a number of passes based on
the latest estimate of the surface and atmospheric parameters.  An expected value of
Ri CLR,  for any channel can be used to estimate η according to

ηi,1
n =

Ri,CLR
n − Ri,1

Ri,1 − Ri,2
, (4.3.4)

where ηi
n
, 1 is the nth pass estimate of η , obtained from channel i, based on the nth pass

estimate of the clear column radiance Ri,CLR
n .  Ri,CLR

n  is obtained by using the radiative

transfer equation to compute the channel i radiance with the nth pass estimates of
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atmospheric and surface parameters.  The general multi-pass procedure referred to by n
will be discussed later.

If the estimate of temperature profile is too warm (cold) over coarse layers of the

atmosphere, the estimated clear column radiances Ri,CLR
n  will be too high (low), and ηi

n
,1

will be too large (small).  In performing HIRS2/MSU retrievals, Susskind et al. (1984)
correct potential biases in nth iterative coarse layer temperatures by adjusting computed
brightness temperatures for the IR channels used to estimate η according to the difference
between the observed brightness temperature for an MSU channel sensitive to mid-lower
tropospheric temperatures and that computed from the nth iterative temperature profile.
This in effect adjusts the nth iterative temperature profile to be consistent with the
observations in a single MSU channel.

We can utilize the superior sounding capability of AMSU, compared with MSU, to
first produce an AMSU only retrieval of atmospheric temperature-moisture profile for use
as the initial guess to start the retrieval process, and use in the first pass estimation of η 1.
The AMSU retrieval can be done before the cloud correction because AMSU radiances are
not significantly affected by non-precipitating clouds.  The temperature retrieval obtained
from AMSU will have the property that radiances computed from it agree well with all
AMSU channels  and should not be very biased over coarse layers of the atmosphere,
though local errors will still exist.  Alternatively, we can use the regression guess of
NOAA’s physical retrieval or the NOAA first product retrieval itself for this purpose.
These profiles will also be unbiased, as long as the NOAA cloud clearing step, described in
section 4.2, is sufficiently accurate.

Using different IR channels in Eq. 4.3.4 will result in different estimated values of
ηi,1 as a result of a combination of local errors in the temperature profile, and channel
noise effects.  Many channels can be used to estimate η1 in order to reduce potential errors.
For the case of a single cloud formation, this can be accomplished by simply taking a
weighted average of ηi,1 over a set of cloud filtering channels to get a single value of η1 as
done in Susskind and Reuter (1985a) and Susskind et al.. (1993).  Once a value of η1 is
computed, the clear-column radiances for all channels can be reconstructed using Eq. 4.3.2.  

If the denominator in Eq. 4.3.4 is small, errors in estimating the numerator will be
amplified in the determination of η.  Therefore, it is important that cloud filtering channels
have a large contrast in radiance between the two fields-of-view.  This implies the channels
should be sensitive to the presence of clouds.  The contrast can be further enhanced by
averaging together observations in the warmest spots and averaging observations in the
coldest spots within a scene to produce two high contrast fields-of-view as done by Reuter
et al. (1988).  Averaging spots also reduces the effects of instrumental noise.  The
methodology for selecting and weighting channels used to determine η is described in the
next section.

Channel selection for cloud filtering

Chahine (1974) showed that 15 µm channels are preferable for use in the

determination of η compared to 4.3 µm channels, because the error in R̂i,CLR , caused by

an error in the estimated temperature profile, will result in a smaller error in η as
determined from Eq. 4.3.4.  This analysis is a result of the properties of the blackbody
function in the two spectral regions.  Moreover, Chahine (1974) and Halem et al. (1978)
show that if one has infra-red observations in both the 15 µm and 4.3 µm temperature
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sounding bands, but no microwave observations, soundings can be done in cloudy
conditions if η is determined using observations in 15 µm channels and the temperature
sounding channels for the mid-lower troposphere come from the 4.3 µm region.  Along
the lines of Chahine (1974), we initially selected channels in the 15 µm band that sound the
mid-lower troposphere for cloud filtering.  These channels were selected to be between
absorption lines so as to produce sharp weighting functions that would have less of an
upper tropospheric and stratospheric contribution in order to maximize sensitivity to the
clouds.  We also avoided channels contaminated by water vapor and ozone absorption, that

could cause errors in Ri,CLR.  This same channel selection methodology was used in

Susskind et al. (1993).

The rationale for use of only 15 µm channels for cloud filtering neglected the effects
of solar radiation reflected off clouds.  When sunlight is reflected off the surface and
clouds, the scene can exhibit more contrast in the 4.3 µm region, especially for low clouds.
In addition, cloud effects on radiances can be of opposite sign at short wavelengths than at
long wavelengths.  This change in sign makes it easier to distinguish cloud effects on the
radiances from thermal effects of the clear atmosphere.  Therefore, it is desirable to include
4.3 µm channels in the cloud filtering set during the day.  We feel that it is desirable to use
the same methodology for both cloud filtering and retrieval of geophysical parameters
during the day and night.  We therefore use both 15 µm and 4.3 µm channels in the channel
set used to estimate η. The 15 µm and 4.3 µm cloud filtering channels are a subset of the
channels used to determine the atmospheric temperature profile. Window channels are
more sensitive to clouds than atmospheric  sounding channels, but are also more sensitive
to uncertainties in surface parameters.  We have developed improved methodology to
include window channels in the determination of η, with a weight that properly reflects the
uncertainty in their clear column radiances.  An analogous weighting procedure is done for
all  channels.  The relative weighting of the 15 µm and 4.3 µm channels in the
determination of η is done objectively and will differ under daytime and nighttime
conditions as described later.

Determination of η for a single cloud formation

The method we use to determine η is analogous to that used by Susskind et al.
(1993), who set

η
η

=
∑

∑

W

W

i i
i

I

i
i

2

2   , (4.3.5)

where Wi  is a weight for channel i.  An appropriate value of Wi  should take into account
propagated errors in ηi  resulting from instrumental and computational noise.  For

example, channels more sensitive to clouds, with large values of R Ri i, ,1 2− , should

receive larger weight.

One can write Eq. 4.3.4 in the form of I equations, one for each channel i, in matrix
form

W RCLR
n − R1( ) = W R1 − R2( ) ηn , (4.3.6)
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where W is an I x I diagonal weight matrix with weight Wii  for channel i,

RCLR
n − R1( ) and R1 − R2( )  are I x 1 vectors, and ηn  is the unknown.  The standard

weighted least squares solution to this matrix problem is given by

ηn = R1 − R2( )′ ′W W R1 − R2( )




−1

R1 − R2( )′ ′W W RCLR
n − R1( ) (4.3.7)

and reduces to

ηn =
Wi

2 Ri,1 − Ri,2( ) RCLR,i
n − Ri,1( )

i
∑

Wi
2 Ri,1 − Ri,2( )2∑

=
Wi

2 Ri,1 − Ri,2( )2
i
∑ ηi

n

Wi
2 Ri,1 − Ri,2( )2

i
∑

(4.3.8)

where ηi
n  is given by Eq. 4.3.4.  Eq. 4.3.8 is analogous to Eq. 4.3.5, but in Eq. 4.3.8, the

contribution of the difference of radiances in the two fields-of-view to the channel weight is
explicitly taken into account.  Therefore Wi  in this context represents any residual weight
factors we may want to add, such as effects of channel noise.  Susskind et al. (1993) used

Eq. 4.3.6, including in Wi  the term Θ Θi i, ,1 2
2

− , that is roughly proportional to

R Ri i, ,1 2
2

−  for the 15 µm channels they used.

The above discussion is accurate as long as sources of channel noise are
uncorrelated from channel to channel.  Under these conditions, an appropriate value of Wi
should be inversely proportional to sources of noise.  There are two sources of noise in Eq.
4.3.6, instrumental noise and computational noise.  Instrumental noise is random and

affects Ri,1 and Ri,2 .  Computational noise affects Ri,CLR
n  and will be correlated from

channel to channel.  In the case of channel correlated noise, the appropriate equation is
given by

ηn = R1 − R2( )′ N−1 R1 − R2( )




−1

R1 − R2( )′ N−1 RCLR
n − R1( ), (4.3.9)

where N is the channel noise covariance matrix, indicating errors in RCLR
n − R1( ).

The iterative methodology to determine clear column radiances consists of three
passes to determine ηn (n=1,2,3), using three sets of conditions, to give  Ri CLR

n
,  , in which

Ri CLR
n
,   and hence   ηn  become increasingly more accurate in each iteration.  Each pass has

its own Nn, reflecting expected errors in Ri CLR
n
,  - Ri,1.  We currently model the noise

covariance matrices as diagonal according to
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where NE∆Ni is the channel i instrumental noise and the remaining terms are contributions
to errors in the computed value of Ri CLR

n
,  resulting from errors in estimated parameters.

The partial derivatives are computed empirically. The profile terms are obtained by either
shifting the entire temperature profile by a constant amount or multiplying the moisture
profile by a constant percent change.  The uncertainties, such as ∆Ts

n , are specified so as to
be indicative of the expected errors for that parameter in each pass.

  Cloud filtering channels which do not see the clouds appreciably for a given scene
are not included in the determination of η.  Channel i is excluded from the set used to

determine η if R R NE Ni i i, ,1 2 3 2− ≤ ∆ .  If we have situations where there are not at

least 2 useful cloud filtering channels, the scenes have little or no contrast.  Under these
conditions, we assume both fields-of-view to be clear and set η = −1 2/ .  This has the
effect of setting the clear column channel radiances to the average of the observed radiances
in both fields-of-view.  The other possibility for very little contrast is that both scenes have
essentially identical, but non-zero, cloud cover, such as full overcast.  In such a case, if we
treat the scene as clear, we will find a mismatch between the AMSU observations,
unaffected by clouds, and the AIRS observations, that are cloud contaminated.  The final
result will be rejection of the profile in the retrieval step as non-convergent in a manner to
be described later.  The constant cloud cover case can also be detected and rejected by

comparison RCLR
n  with R1.  Simulations show that cloudy low contrast scenes can be

identified and rejected if

Ri
n
,CLR − Ri,1( )2

Niii=1

I

∑ > 1.5
  . (4.3.11)

Rejection criteria are described in more detail in section 7.2.

Multiple Cloud Formations with Multiple Fields-of-view

In order to solve for K cloud formations with unknowns η η1 . . . K , K+1 fields-of-
view are needed.  A simple relationship between αk  and ηk  does not exist for the case of
multiple cloud formations, nor is the solution η η1 . . . K  necessarily unique.  For example,
consider a case of only one cloud formation with cloud fractions of 20%, 40%, and 60% in

fields-of-view 1 - 3 respectively.  η η1
1

2
11 0( ) ( )= =,  and η η1

2
2
20 5( ) ( )= =, .  are two

examples of solutions to the problem, as are appropriate linear combinations of these
solutions, given by

η
η

η
η

η
η

1

2

1
1

2
1

1
2

2
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( )
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( )f f .        (4.3.12)

The optimal solution should provide the correct clear column radiances and do so
with the smallest values of η in order to minimize amplification of instrumental noise
when used in Eq. 4.3.1.  

The methodology to determine an optimal set of ηk  is analogous to that for a single
cloud formation.  If one uses a set of I channels to estimate K values of η, Eq. 4.3.1 may
be expressed as a set of linear equations in matrix form according to
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n − R1,1
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(4.3.13)

or

Cn = Dηn , (4.3.14)

The solution to Eq. 4.3.14 is given by

ηn = D' N−1 D( )−1
D' N−1 Cn , (4.3.15)

where  N is the channel noise covariance matrix as given in Eq 4.3.10. Given η n , ˆ
,Ri clr
n  is

constructed for all  channels according to Eq 4.3.1. ˆ
,Ri clr
n are used as the observations in the

general retrieval process.  If the observation in a channel is not sensitive to the presence of
clouds in the field of view, it is better to average the observations in all fields of view

R̂i,clr = 1
K + 1

R i,k
k=1

K+1
∑ .        (4.3.16)

This is equivalent to defining separate values of η for channels that do not see

clouds, ηi,clr
n = − 1

K + 1
, and using them to produce R̂i,clr

n  for the appropriate channels.

Currently, channel i is considered not to be sensitive to clouds if
Ri,1 − Ri,k+1 ≤ 3 2 NE∆Ni  and it is included in a set of channels expected not to see

clouds given the retrieved cloud height.

Steps in the AIRS Final Product Processing System

The AIRS final product processing system is comprised of a number of sequential
steps listed below.

1. Obtain an initial guess which agrees with AMSU A and HSB radiances.

2. Determine an initial η1
1 , η2

1  from equation 4.3.15 using the initial guess parameters.

Also produce the retrieval noise  covariance N1 as described later.

3. Do a start up surface parameter retrieval using R̂i
1 obtained from equation 4.3.1.

All channels used in this step are sensitive to clouds, so there is no need for a cloud

height retrieval.

4. Produce an improved AMSU A temperature profile retrieval, using the retrieved

value Ts
1, and radiances in AMSU A channels and a set of AIRS stratospheric

sounding channels which never see  clouds.
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5. Determine updated η1
2 , η2

2  taking advantage of the refined parameters.  Also 
determine cloud parameters to decide which channels do not see clouds.  This

information is used to  produce R̂i
2  as well as the retrieval channel noise covariance

matrix N2 .  This is the end of start up system.

6-9 Use R̂i
2  and N2  to refine the surface parameters, temperature profile, humidity

profile, and ozone profile.  These steps give the first pass retrieved parameters.

10. Using the first pass retrieved parameters, determine refined η1
3 , η2

3   and final

cloud parameters.

11. Produce the final clear column radiances R̂i
3 , which is a product of the system,

and N3 .

12. Repeat steps 6-9 using R̂i
3  and N3  to obtain the final products, using the first

pass parameters as the initial guess.

General Iterative Least Squares Solution

Because the radiative transfer equation is nonlinear, an iterative approach is used to
linearize it about the nth iterative parameters   X

n
l

+1 .  The iterative retrieval process described
here is different from the use of different passes in the determination of  η.  The values of
ˆ

,Ri clr  used in the iterative retrieval loop are held fixed in a given pass.  The n+1th iterative
estimate of   Xl  is expanded according to

  

X X F A X F An n
j

j

J

j
n o

j
j

J

j
n

l l l l l
+

= =
= + = +∑ ∑1

1 1

∆ ,
(4.3.17)

where the columns of F represent a set of functions,   X
o
l  is the initial guess, and Aj

n  are
corresponding coefficients given by

  
A j
n = A j

n−1+ ∆A j
n (4.3.18)

which together with   X
o
l  determine the solution.  A solution is found that attempts to

minimize the residuals ∆Θi
n , weighted inversely with respect to expected noise levels, for

the channels used to determine Aj .  The residual for channel i is given by

∆Θi
n = Θ̂i − Θi

n , (4.3.19)

where Θ̂i is the observed (clear column) brightness temperature and Θi
n  is the brightness

temperature computed from the nth iterative parameters.  The nth iteration residual for
channel i is attributed to errors in the coefficients, δAj

n , and to noise effects, i.e.,
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∆Θ Θi
n

ij
n

j
n

i
j

S A= +∑ δ ˜ , (4.3.20)

where Sij is an element of the sensitivity matrix or Jacobian given by

S
Aij

n i
n

j
n= ∂

∂
Θ

, (4.3.21)

and the noise factor Θ̃i  for a given case has two parts: errors in observed clear column

radiances δΘ̂i, which are affected by instrumental noise and cloud clearing errors, and

computational noise δΘi
c .  

In our simulations, we assume perfect knowledge of physics,    i.e   ., if we know all of
the variables exactly, we can compute exact noise free radiances.  Nevertheless, the
transmittances depend on the variables to be solved for.  Therefore, computational noise
exists. Computational noise, arising from errors such as too low (high) an estimate of
atmospheric water vapor, will produce noise that is correlated between channels.
Instrumental noise is uncorrelated from channel to channel but cloud cleared errors are
correlated from channel to channel. Each retrieval step uses an appropriate noise covariance
matrix

Ni ′i = N̂i ′i + Ni ′i
c     (4.3.22)

with values which depend on the pass.  We further define W as N−1.

A general form of the solution to this problem is given by

∆An = ′S n W Sn + Hn[ ]−1
′S n W∆Θn = Mn∆Θn,

(4.3.23)

where ∆An  and ∆Θn are column vectors of the updates to the coefficients and of the
residuals, respectively, and Hn  is a stabilizing or damping matrix.

If the noise covariance matrix N  were diagonal, with values Nii = Θ̃i
2 , Wn would be

diagonal with values Wii = Θ̃i
−2 .  Under these conditions, one can define a channel weight

Wi as Wii
1/2 = Θ̃i

−1.  With correlated noise, Wn contains off diagonal matrix elements.
One can still think of an effective channel weight that decreases with increasing channel
noise

Wi = ′W W[ ]ii
1/4 = Wi ′i

2

′i
∑










1/4

.
(4.3.24)

For optimal determination of the solution vector ∆An , an accurate treatment of N , and
hence W, is needed.  The treatment of N  will be discussed later.  The matrix ′S W S  in
Eq. 4.3.23 can be thought of as an information content matrix, proportional to the square of
the sensitivity of brightness temperatures to changes in parameters and inversely
proportional to the square of the noise estimates of the channels.  

Hanel et al. (1992) and Rodgers (1976) have reviewed several methods of
constraining the ill-conditioned inverse problem.  In the minimum variance approach
(Rodgers, 1976), H is taken to be the inverse of the a priori error covariance.  If the
statistics of both the measurement and a priori are Gaussian, the maximum likelihood
solution is obtained.  If the a priori  covariance is taken to be H I= γ , the maximum
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entropy solution is obtained.  Other forms of H include the first or second derivative
formulations (Twomey, 1963) that force a smoothness constraint on the solution.  The
solution can also be constrained by the relaxation method (Chahine, 1968) and by the
Backus and Gilbert (1970) method.

The minimum variance and maximum likelihood solutions are often considered to
be "optimal."  However, if the a priori error covariance is not known or estimated
incorrectly, the solution will be sub-optimal.  If the a priori  errors are underestimated, the
solution could be overconstrained.  This could potentially create biases in the retrievals.
The biases may mask small trends in the retrieved data that one may be trying to extract.
The approach described here attempts to keep the effects of instrument noise at a tolerable
level without assumptions regarding the a priori  data error covariance.

Transformation of Variables

As a consequence of stabilizing the potentially ill-conditioned solution, the addition
of H may also have the effect of damping the information content (reducing ∆A  for all
modes).  We transform variables to apply a constraint such that the well-determined
components of the variables are solved for without appreciable damping.  If we had
originally chosen a different set of functions which were linear combinations of original
functions, i.e.,

G FU= , (4.3.25)

where U is a unitary transformation ( UU′ = 1), and expanded the solution in the same way
as in Eq. 4.3.17 with unknowns ∆Bn , we would have obtained in matrix form

X X G B X FU B X F An n n n n n n+ = + = + = +1 ∆ ∆ ∆ . (4.3.26)

The objective is to find a transformation matrix U with desirable properties.  In the
new basis set, the transformed Jacobian is given by

T
B

S Un
n

n= =∂
∂

Θ
. (4.3.27)

The constrained solution, as given by Eq. 4.3.23, in terms of this new set of
functions is given by

∆Bn = T'n W Tn + H( )−1
T'n W ∆Θn − δΘn−1( ) = ′U ∆An . (4.3.28)

The term δΘn−1, that has been included in Eq. 4.3.28, is an iterative background
correction term that is zero in the first iteration and will be discussed later.  Un  can be
selected such that ′ = ′ ′T W T U S W SUn n n  is diagonal with real non-negative

eigenvalues λ j
n .  The inverse of each eigenvalue is the variance in that eigenmode.  The

total variance is the trace of the ′( )−S WS 1 or, equivalently, the trace of ′U ′S WSU( )−1.  The

unconstrained solution (H=0), with no background correction δΘn− =( )1 0 , is then given

by

∆Bj
n 0( ) = λ j

n( )−1
Tkj

n

k,i
∑ Wk,i ∆Θi

n = λn( )
j

−1
mj

n ∆Θn ,
(4.3.29)
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where mj
n  is the vector corresponding to the jth row of ′T W .  In general, the ill-

conditionedness arises from those components of G having low information content and
small eigenvalues (high variance), indicating that those components cannot be well
determined from the observations alone and need damping.  Components with large
eigenvalues may be quite well determined and require little or no damping to achieve a
stable solution.  If we choose H to be diagonal with values ∆λ , the constrained solution
with no background correction term is given by

∆ ∆ ∆ ∆ΘB mj
n n

j
n

j
n

j
n nλ λ λ( ) = +( )−1

. (4.3.30)

The coefficients ∆ ∆Bj
n

j
nλ( ) are damped from the unconstrained coefficients

∆Bj
n 0( ) by

∆ ∆
∆

∆ Φ ∆B B Bj
n

j
n j

n

j
n

j
n j

n
j
n

j
nλ

λ
λ λ( ) =

+
( ) = ( )0 0 ,  (4.3.31)

where Φ j can be thought of as a filter or damping function.  This formulation is the same
as the maximum entropy solution, applied in transformed space, if ∆λ  is set equal to a
constant.  However, instead of using a single constant for every ∆λ j

n , we compute a
different value for each eigenfunction.  For well determined eigenmodes, ∆λ  is set equal to
0, giving no weight to the a priori.  For modes that are not well determined by the
measurements, ∆λ  is determined in such a way as to limit the propagation of instrument
noise to a pre-specified amount.  The determination of ∆λ j

n  is discussed in detail in the next

section.

Application of a Constraint

The residual ∆Θi
n  can be thought of as having both a signal and a noise

component, i.e.,

∆Θ ∆Θ Θi
n

i
signal

i= + ˜    . (4.3.32)

The component of ∆Bj that arises from the propagation of channel noise, Θ̃i , is
given by

∆B̃j
n λ j

n( ) = λ j
n + ∆λ j

n( )−1
′T n W[ ] Θ̃  . (4.3.33)

A statistical estimate of ∆B̃j
n  over an ensemble of profiles can be obtained by

∆B̃j
n = ∆B̃n ∆B̃n′



jj

1/2

= λ j
n + ∆λ j

n( )−1
′T W Θ̃ ˜ ′Θ ′W T[ ]jj

1/2
=

λ j
n( )1/2

λ j
n + ∆λ j

n

(4.3.34)
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because Θ̃ ˜ ′Θ = N = W−1.  This formulation of ∆B̃ is similar to that given by Rodgers

(1990).  If ∆λ j
n  were zero, ∆B̃j

n  can become large if λ j
n  is small. ∆λ j

n  can be selected such

that ∆B̃j
n  will be less than or equal to a threshold value.  If we allow ∆B̃j

n  to be no more

than ∆BMAX , we can set ∆λ j  = 0 if λ j ≥ ∆BMAX
−2  and set ∆λ j =

λ j
1/2 − ∆BMAX λ j

∆BMAX
otherwise.  For example, if ∆BMAX  = 0.5, ∆λ j  = 0 for λ j ≥ 4 , and if ∆BMAX = 1, ∆λ j  =
0 for λ j ≥ 1, corresponding to less damping.  Constraints are only applied to those
eigenfunctions with lower information content than the critical value corresponding to
∆BMAX .  The value of ∆BMAX was determined empirically for each type of retrieval being
done.  The AMSU temperature retrieval step behaved best with ∆BMAX = 1 0. , the AIRS
surface temperature retrieval step with a value of ∆BMAX = 0 35. , the AIRS temperature and
moisture profile retrieval steps with ∆BMAX = 1.75 and 1.30 , respectively, and the ozone
profile retrieval with ∆BMAX = 15 .  The computation of all matrix elements shown above,
including λ  and ∆λ , is done in each iteration.  

Formulation of the background term

The need for an iterative process arises because the radiative transfer equation is not
linear.  In every iteration, we recompute Θi

n , as well as S Un n,  and λn .  If the solutions
were completely linear, and we applied no damping, then

∆Θn+1 0( ) = Θ̂ − Θn+1 0( ) ≅ ∆Θn − Sn Un ∆Bn 0( )  , (4.3.35)

and ∆Bn+ ( )1 0  would be determined to be zero because ∆Bn 0( ) would have already
minimized the residuals.

Eq. 4.3.35 is not exact, both because Θn+ ( )1 0  is not given exactly by

Θ ∆n n n nS U B+ , and because ∆Bj
n ≠ ∆Bj

n 0( ) .  As a result of applying ∆Bj
n  rather than

∆Bj
n 0( ), which would have minimized the radiance residuals, we obtain

∆Θ ∆Θ ∆ ∆ ∆Θ Θn n n n n n n nS U B B+ + +≈ ( ) + ( ) −[ ] = ( ) +1 1 10 0 0 δ  . (4.3.36)

In Eq. 4.3.36, ∆Θn+ ( )1 0  represents the portion of ∆Θn+1 that is due to effects of

non-linearity on the solution, while δΘn  represents the residual portion of ∆Θn+1 due to
the effects of damping in iteration n.  The second term is zero for undamped modes and
increases in significance with increased damping.  This term is also zero for all modes in
the first iteration.  We only want to include the effects of non-linearity in the iterative

procedure used in the determination of ∆Bn .  Therefore, the background term to be used in
Eq. 4.3.28 is given by

δΘ ∆Β ∆n n n n nS U B= ( ) −[ ]0

and we solve for ∆Bj
n+1  according to
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∆ ∆ ∆

Φ ∆ ∆ ∆ ∆

B U S W

B U S W S U B B

j
n

j
n

j
n n n n n n

n
j
n

j
n

j
n n n n n n

j
n

j
n

+ + + − + + + +

+ + + + − + + +

= +( ) ′ ′ −[ ]
= − +( ) ′ ′ −( )[ ]
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 10 0

λ λ θ δθ

λ λ( ) ( )

(4.3.37)

where ∆Bj
n  is the value of ∆Bj which was applied in iteration n.  Inclusion of the

background term in Eq. 4.3.37 insures second order convergence along the lines discussed
by Rodgers (1976) with regard to treatment of the     a        priori    term.  The next section defines
the criteria used to terminate the iterative process.

Convergence Criteria

In solving Eq. 4.3.37, we are attempting to find solutions to the radiative transfer
equations which minimize weighted residuals of observed and computed brightness
temperatures, corrected for the background term.  To test convergence of the solution, we
monitor the weighted residual

R V V= −( )′ ′ −( )





∆Θ Θ ∆Θ Θδ δ
1 2/

 ,
(4.3.38)

where the weight matrix V accounts for noise effects on the channel residuals, as well as
the relative information content of the channels with regard to the variables being solved
for.  For example, if a channel (or linear combination of channels) carries little information
content in terms of signal to noise, it should be given little weight in the estimation of the
residual in Eq. 4.3.38.  An appropriate choice of V, expressing the information content of
the channels, would therefore be

V = λ j + ∆λ j( )−1
′T W( )  , (4.3.39)

in which case we obtain

R B B= ′[ ]∆ ∆ 1 2/
 . (4.3.40)
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As shown in Eq 4.3.40, a reasonable way to determine if the solution has
converged, in terms of weighted residuals of observed minus computed brightness
temperatures, is to see if the solution has converged in terms of the iterative changes in the
solution itself.  Initially, we set ∆Bj = 0  if Φ j

1 0 05< . , that is, coefficients of very heavily
damped components with little information content are not believed at all.  The solution is
said to have converged when the RMS value of ∆Bj

n  is less than 10% of the RMS value of

∆B̃n  for all components not set equal to zero.  The iterative procedure is also terminated if
the RMS value of ∆Bj

n  is not less than 75% of ∆Bj
n−1  for the non-zero components.  This

indicates the solution is not converging rapidly enough and may be responding primarily to
unmodeled noise.  The iterative procedure, which usually converges by 3 iterations, is
carried out analogously for all retrieval steps.  The detailed application of the constrained
least squares formalism will be described in the next section for each retrieval step.

The retrieval noise covariance matrix

The retrieval noise covariance matrix N  to be used in Eq. 4.3.23 (as W = N−1) is
given by a sum of two terms

N = N̂ + Nc          (4.3.41)

where N̂ represents the error covariance in the reconstructed clear column brightness

temperatures and Nc  represents the error covariance in the brightness temperatures
computed from the estimated profile, as a results of errors in parameters assumed known
(being held fixed) in a retrieval step.  

    Clear column brightness temperature error covariance matrix    N̂

Errors represented  in N̂ arise from both instrumental noise and errors in ηk .
Under cloudy conditions, the computation of the reconstructed clear-column radiances
using Eq. 4.3.1 has the effect of amplifying observational (but not computational) noise.  If
the channel instrument noise has a normal distribution with a standard deviation NE Ni∆ ,
and the channel random noise in the K+1 fields-of-view is uncorrelated, the random noise
in the reconstructed clear column radiances has a standard deviation NE Ni

ran∆  in radiance
units given by

NE N NE N NE N Ai
ran

i k
k

K

k
k

K

i k∆ ∆ ∆= +






+ = ( )

= =
∑ ∑1

1

2
2

1

η η η (4.3.42)

where A kη( ) is the noise amplification factor.  The noise amplification factor can be

considerable.  Even for a single cloud formation, A kη( )  is 5  for η1 1=  and 13  for

η1 2= .  If it is determined that a channel does not see the clouds, we set ηk = − 1
K + 1

 for

all k and A ηk( ) = 1

K + 1( )1/2  for that channel.



AIRS Team Level 2 Algorithm Theoretical Basis Document

Ver 1.7 18 Sept 199769

Errors in the values of ηk  add an additional source of noise to the reconstructed
clear-column radiances.  However, unlike the amplification of instrumental noise that is
uncorrelated from channel to channel, errors in ηk  also result in channel correlated errors
in reconstructed clear-column channel radiances. For example, if ηk  is estimated too high
(low), it will have the effect of making a correlated radiance error for all channels, with a
relative magnitude proportional to R Ri i K k, ,1 2− + − .  This source of error will contribute to
both diagonal and off-diagonal terms in the noise covariance matrix.

If we assume all sources of observational errors to be uncorrelated, we can estimate
the diagonal contribution of observational noise to the noise covariance matrix according to

NE N NE N R Ri i
ran

k i i K k
k

K

∆ ∆ ∆= ( ) + −[ ]( )+ −
=

∑2
1 2

2

1

η , , , (4.3.43)

where ∆ηk  is the estimated error in ηk .  The diagonal contribution of estimated

measurement error to the clear column brightness temperature noise covariance matrix N̂ii,
is given by

N̂ii = ∂Bi
∂T





Θ̂i

−1
NE∆Ni













2

,
(4.3.44)

where ∂ ∂B Ti /  is evaluated at the reconstructed clear-column brightness temperature Θ̂i .
Multiplication by this factor is necessary to change form radiance units to brightness
temperature units.

Allowing for correlated errors in ηk  and η ′k , it is more appropriate to write

NE N NE N R Ri i
ran

ii∆ ∆ ∆ ∆ ∆ ∆= + ′ ′[ ]( )2 η η   (4.3.45)

where  ∆R R Ri k i i K k, , ,= − + −1 2  and ∆ ∆η η′( ) ′kk  is the error covariance matrix of ∆η.  The
error covariance matrix  ∆ ∆η η′  can be approximated in a straightforward manner from
Eq. 4.3.15.  If we assume that the major source of error in the determination of η via Eq.

4.3.15 is due to errors in the vector Cn  (given by Ri,CLR
n − Ri,1), then

∆η = ( ′D N−1D)−1 ′D N−1∆C (4.3.46)

and

∆η∆ ′η = ( ′D N−1D)−1 ′D N−1∆C∆ ′C( ) N−1( )′ D ′D N−1D( )−1′ = ′D N−1 D( )−1   (4.3.47)

if we can replace ∆C∆ ′C  by N, the error covariance matrix of C.  We use the form of Eq.

4.3.47 to represent ∆ ∆η η′  in Eq. 4.3.45, but set ∆η∆ ′η = γ ′D N−1D( )−1
, where the

empirical coefficient γ  allows for errors in ∆η that differ from those predicted
theoretically.  This term is independent of channel for all channels that see the clouds.
Currently, we find γ = 1 works satisfactorily.

The diagonal term of the clear column brightness temperature error covariance
matrix is then given by
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N̂ii = NE∆Ni A ηk( )( )2 + ∆R∆η∆ ′η ∆ ′R( )ii





∂B
∂T





Θ̂i

−1











2

.        (4.3.48)

The off-diagonal contribution to the clear column brightness temperature noise

covariance matrix N̂i ′i  arises only from the correlated errors made in the reconstructed clear
column radiances of channels i and ′i  due to ∆ ∆η η′

N̂i ′i = ∆R∆η∆ ′η ∆ ′R( )i ′i
∂B
∂T





Θ̂i

−1 ∂B
∂T





Θ̂ ′i

−1
.  

(4.3.49)

The contributions to the noise in channels i and ′i are positively (negatively) correlated
when the difference in channel radiances in the two fields-of-view have the same (opposite)
sign.  This term is combined with the channel correlated computational noise due to
estimated errors in variables.

If channel i does not see clouds, then we set A ηk( ) = 1
K + 1







1/2
 in Eq. 4.3.48 and

all terms involving ∆η∆ ′η  in Eq. 4.3.48 and 4.3.49 are set equal to zero.

Computational noise covariance matrix Nc

The computational noise covariance matrix is designed to account for errors in the

computed clear column brightness temperature Θi
n, resulting from errors in the

geophysical parameters used in the retrieval step.  It is assumed that these errors arise
primarily from errors in variables Xj assumed known and held fixed in the retrieval step.

We model Nc  according to

Nii
c = ∂Θi

∂Xj
∆Xj

m( )











2

j
∑ + 0.12        (4.3.50)

and

Ni ′i
c = ∂Θi

∂Xjj
∑

∂Θ ′i
∂Xj

∆Xj
m( )2         (4.3.51)

where 
∂Θi
∂Xj

 represents the derivative of Θi,CLR with respect to parameter Xj and ∆Xj
m( ) is

the estimated uncertainty in parameter Xj in pass m through the system.  The parameters

used for Xj in modeling Nc  represent uncertainties in surface skin temperature, surface

emissivity and surface reflectance, as well as constant (in height) shifts in the temperature
profile, and multiplication of the water vapor and ozone profiles by a constant as a function

of height.  The derivatives 
∂Θi
∂Xj

 are  computed empirically.  The term 0.1 in Eq. 4.3.50 is

taken to represent additional unmodeled errors.
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Variable and Channel Selection in the Application of Constrained Least Square
Solution

    Surface Parameter Retrieval

Channel radiances depend on several unknown surface parameters:  the surface
skin temperature ( Ts ); the spectral emissivity, ε ν( ) , and bi-directional reflectance ρ ν( );
and the microwave emissivity ( εm ).  Radiances in microwave window channels are more
sensitive to errors in emissivity than to surface temperature and also have a significant
atmospheric contribution.  For this reason, only infrared channels are included in the
surface parameter retrieval step and εm  is not solved for.

In the surface parameter retrieval, we selected window channels from both long-
and short-wave IR window regions generally avoiding even weak absorption lines.  For
window channels, the transmittance at the surface, τ ps( ), is generally close to 1.  Although
the opacity of infrared window channels is small, there is absorption and emission due to
the water vapor continuum and the nitrogen continuum, both absorbing primarily in the
lowest portions of the atmosphere.  Therefore, the radiance in window regions depends not
only on T ands , ,ε ρν ν′ , but also on the temperature and moisture in the boundary layer.
The radiances of window channels do not depend appreciably on temperature and moisture
above the boundary layer.  To account for the additional dependencies in the surface
parameter retrieval, we also can solve for two additional variables by scaling the total
precipitable water (  ∆ln W) and shifting the air temperature ( ∆TAIR ).  A few channels
centered on weak water vapor absorption lines were included to help account for these
additional variables that will be subsequently modified in the temperature and moisture
retrievals.  These weak water vapor lines are in the 3.7 µm window and are sensitive to
water vapor absorption as well as reflected solar radiation.  The reflected solar radiation
causes the surface to appear hotter than in other window regions not affected by reflected
solar radiation.  Therefore, in the short wavelength window, the contrast between the
radiance leaving the surface and that emitted by the boundary layer is enhanced.  This
effect, coupled with the increased path length of the solar radiation, makes channels on
weak water vapor lines in this window very sensitive to water vapor in the boundary layer.
Several of the channels in the surface parameter retrieval are also used later in the moisture
profile retrieval.  Currently, we do not attempt to shift the temperature profile in any pass
because the input temperature profile agrees with AMSU A radiance and is assumed to be
accurate enough.  We do not scale the water vapor profile in the second pass surface
parameter retrieval because we have already retrieved a water vapor profile using AIRS
channels in the first pass.  

When we do scale the water vapor, a total of thirteen variables are solved for in the
surface parameter retrieval for a daytime case (ten for a nighttime case).  The perturbation
functions include a perturbation to Ts, a perturbation to each of 8 infrared spectral
emissivity functions, 3 spectral bi-directional reflectance functions, and a scaling of the
water vapor profile.  The values of the perturbations were selected to give comparable
values of the S matrix for a typical case.  If all perturbation functions Fj   were half as large,
Sij would be half as large for each mode, and the solution vector ∆Aj  would be twice as
large.  The perturbations should be large enough to produce significant S matrix elements,
but not so large as to produce an appreciable non-linear response.

The Jacobian or sensitivity matrix Sn is computed every iteration.  The partial
derivative of channel brightness temperature with respect to the coefficients of each of the
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above functions is computed empirically as follows:  (1) Compute the channel i radiance
and corresponding brightness temperature using the nth iteration parameters (   i.e.   ,

Ts
n , εν

n, qn P( ) , etc.) (2) Compute the channel i transmittance (if necessary), radiance, and

corresponding brightness temperature, using the nth iteration parameters but setting the

coefficient ∆Aj( ) of perturbation function Fj  to unity.  (3) The sensitivity Sij, or change in

channel i brightness temperature per unit change in coefficient ∆Aj , is given by the
difference in brightness temperatures computed in steps (1) and (2).  The sensitivity or
partial derivative of brightness temperature with respect to ground temperature, spectral
emissivity, and surface bi-directional reflectance can be computed theoretically by
differentiating the clear column radiative transfer equation (and converting to brightness
temperature) because the transmittance functions do not depend on these parameters.

After the sensitivity matrix is computed, the inversion procedure described earlier
proceeds.  In the ground temperature retrieval, we did not include modeled channel
computational noise in the noise covariance matrix, but including only the estimate 0.1°C
for unmodeled computational noise from other sources in Eq. 4.3.50. The retrieved values
of Ts , εν, and ρν will be held constant and used in the subsequent iterative steps for
temperature, moisture, and ozone profile retrievals.  The shifted water vapor profile will be
held fixed in the transmittance and radiative transfer calculations for the temperature profile
retrieval and used as the first guess in the water vapor retrieval.

    Temperature Profile Retrieval

The temperature profile retrieval problem is set up and solved in a manner
completely analogous to the surface parameter retrieval.  The solution for the retrieved
temperature profile is written in the form

  

Tn Pl( ) = To Pl( ) + Fj Pl( )
j=1

J
∑ Aj

n = To Pl( ) + FA , (4.3.52)

where   l
 
ranges over the number of levels used to compute channel transmittances and

radiances, and j ranges over the number of functions that we solve for, currently set equal
to 13.  The functions in the surface parameter retrieval were taken as discrete changes in
different surface or atmospheric parameters.  Following the approach of the surface
parameter retrieval, the functions Fj  are selected as localized functions of pressure,
corresponding to changes in temperature primarily in a layer from P to Pj j−1.  Use of
localized functions is convenient for computing the S matrix and makes the problem more
nearly linear.  The methodology discussed previously does not require the functions to be
orthogonal.  In order for the solution to be continuous, the functions chosen are trapezoids,
with a value of 0.5° between Pj  and Pj−1 and falling linearly in log P to 0° at Pj+1 and
Pj−2.  The highest and lowest functions in the atmosphere are special cases, with values of
1° at the upper or lower limit of the atmosphere (1 mb or the surface), 0.5° at the adjacent
pressure, and followed by 0° at the next pressure level.

The Jacobian matrix is computed exactly as in the surface parameter retrieval.  In
any iteration, transmittances and brightness temperatures Θi  are computed for the

temperature sounding channels using T P and T P F Pn n
j( ) ( ) + ( ) , where F Pj( )  is one of

the trapezoids, and the Jacobian is obtained empirically according to
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S T P F P T Pij
n

i
n

j i
n= ( ) + ( )[ ] − ( )[ ]Θ Θ .

(4.3.53)

It can be shown that for an opaque temperature sounding channel, a shift of the
entire atmospheric temperature profile by 1° will cause roughly a 1° change in brightness
temperature (Susskind et al., 1984).  Moreover, a localized change of 1° in an atmospheric
layer containing the non-zero part of the channel's weighting function will likewise result in
a 1° change in brightness temperature.  This brightness temperature change will drop off as
the layer becomes thinner than the weighting function.  To insure sensitivity of at least one
sounding channel to changes in the layer (trapezoid) temperatures, layers were selected to
be coarse enough to have an element of the S matrix of at least 0.2 for the layer.  While the
Jacobian is profile dependent, the layer structure used to define the trapezoid functions was
held fixed for all soundings.  They were selected so as to be neither too thin, resulting in
lack of sensitivity, nor too coarse, resulting in lack of resolution.  The pressure boundaries
for the 13 functions used in this study are shown in Table 4.3.2.  According to Eq. 4.3.52,
the only structure in the solution finer than the spacing of these boundary levels must come
from the initial guess.  In fact, transforming and damping functions as discussed earlier
will further decrease the ability of the solution to discern fine structure not contained in the
information content matrix ′S WS .  This damping is profile dependent.

In the temperature profile retrieval, it is desirable to select channels which are
relatively insensitive to the ozone and water vapor distributions because these variables
have not been solved for except for an estimate of the vertically integrated water vapor
content obtained in the surface temperature retrieval step.  In addition, it is desirable to
select temperature sounding channels between absorption lines to obtain the best channel
weighting functions (Kaplan et al. 1977).  Along the lines of Kaplan et al. (1977) and
outlined in Table 4.3.1, we selected 96 channels in the 15 µm CO2 band, using Q-branch
channels near 666 cm-1 to sound the mid to upper stratosphere; channels in between CO2
absorption lines and near the 720 cm-1 and 740 cm-1 Q branches to sound through the
upper troposphere; and twenty nine channels in the CO2 4.3 µm band P and R branches,
primarily in the vicinity near 2380 cm-1, to sound the mid to lower troposphere.  The
noisiest spectral region is near 15 µm.  For this reason, many of the 15 µm channels used
represent spectral intervals sampled twice per channel width.  This adds little information
about the vertical structure but increases signal to noise.  We also included 12 AMSU-A
channels, (2-14 from Table 2.3), in the temperature profile retrieval.

Unlike Kaplan et al. (1977), we have also included 17 temperature sounding
channels between absorption lines in the 15 µm CO2 band that are sensitive to the mid-
lower tropospheric temperature profile.  The inclusion of these channels does not
appreciably affect sounding accuracy under clear conditions but are very significant under
cloudy daytime conditions, for which effective noise levels of the 4.3 µm tropospheric
sounding channels can become large.  In selection of these channels, we avoided spectral
regions near water vapor lines of appreciable strength.  The channel radiances of the mid-
lower tropospheric temperature sounding 15 µm channels are still affected by water vapor
because of absorption due to the wings of nearby water vapor lines as well as the water
vapor continuum.  

Errors in the estimate of the water vapor profile used to compute the radiances will
produce errors in the computed brightness temperature for a given channel, as well as
correlated errors in other temperature sounding channels sensitive to water vapor
absorption.  These errors must be accounted for in the channel computational noise

covariance matrix Nc  if channels sensitive to water vapor are to be used optimally.  While
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it is difficult to estimate the radiance error due to errors in the water vapor profile, the error
in a channel radiance due to a multiplicative error in the entire water vapor profile is easily

Temperature retrieval Moisture retrieval Ozone retrieval
1
2
5
10
20
60
100
140
190
300
475
650
825

surface

20
100
200
300
400
500
600
700
850

surface

1
20
60
140
300

surface

TABLE  4.3.2.  TRAPEZOID OR LAYER ENDPOINTS

computed.  If the fractional error in total water vapor is x, then the error in computed
brightness temperature is given by

  

∂Θi
∂lnW

= Θi
n x( ) − Θi

n 0( )
x

,            (4.3.54)

where Θi
n x( )  is the brightness temperature computed for channel i using all nth iterative

parameters, but with the water vapor profile scaled by 1 + x. In computing the noise
covariance matrix for the temperature profile retrieval, we set   ∆lnW = 30%  at night
and 20% during the day, during which the surface parameter retrieval provides an
improved estimate of total precipitable water.  Both values are set to be larger than the error
in total precipitable water obtained after the ground temperature retrieval, because we did
not take detailed profile errors into account.

The effects of errors in the estimated water vapor profile on computed channel
radiances, as well as radiance errors due to errors in ozone profile and surface parameters,
are taken into account in the computational noise covariance matrix (Eqs. 4.3.50, 4.3.51).
The noise due to errors in the ozone profile is computed analogously to that for the water
vapor profile with the value   ∆lnO3  set equal to 20%.  Errors in retrieved ground
temperature, surface emissivity, and bi-directional reflectance are correlated with each
other.  For example, high values of surface skin temperature will be compensated for by
low values of emissivity.  To account for this, we set the effective error of Ts  to a value
which is less than the actual error in estimated surface skin temperature in computing the

noise covariance matrix.  We then define 
∂Θi

n

∂Ts
 as the error in brightness temperature for
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channel i given the effective error in Ts .  We also include an analogous term for 
∂Θi

n

∂ρi
.  We

set ∆Ts = 1° and ∆ρ=0.005.

Incorporation of these terms into the noise covariance matrix has the effect of
making channels sensitive to water vapor absorption, ozone absorption and/or the surface
temperature appear noisier.  It should be noted that in general, the mid-lower tropospheric
sounding 15 µm channels will be "noisier" for moist cases than for very dry ones, where
uncertainty in water vapor profile will have a smaller effect on the 15 µm radiances.
Conversely, 4.3 µm channels are “noisier” during the day than at night.

The contributions to the noise covariance matrix due to errors in estimated total
precipitable water and surface skin temperature  are included for all temperature sounding
channels.  Neither is included in the ground temperature retrieval because both variables are
being solved for.  The estimated error in surface temperature is included in the noise
covariance matrix in the subsequent steps of water vapor profile retrieval and ozone profile
retrieval, and the estimated error in water vapor profile is also included in the ozone profile
retrieval, but not in the water vapor retrieval.

The retrieval step described above is done after the AMSU retrieval step has been
done in the start up system.  That AMSU retrieval step is analogous, but uses only AMSU
A channels and stratospheric AIRS temperature sounding channels, and solves for the
microwave emissivity as well as coefficients of the 13 temperature perturbation functions.

      Water Vapor Profile Retrieval

Unlike the surface parameter and temperature profile retrievals, the water vapor
profile retrieval problem is highly non-linear.  A change in water vapor abundance in a
given level affects the transmittances and atmospheric emission and absorption at all higher
pressure levels in a complex manner.  Nevertheless, the problem can be set up and solved
in a completely analogous manner.  In the surface parameter retrieval, the entire water
vapor profile (up to 50 mb) was multiplied by a constant unknown factor.  Following this
form, the solution for the retrieved moisture profile is expressed as

  

qn Pl( ) = q0 Pl( ) 1+ Fj Pl( ) Aj
n

j=1

J

∑












, (4.3.55)

where   l  ranges over the 64 levels used to compute transmittances and radiances, and j
ranges over J solution functions.  The functions   F Pj l( )  are expressed as trapezoids with a
value of 0.05 in coarse atmospheric layers, in a manner analogous to that described above
in the temperature profile retrieval.  The endpoints of the 8 trapezoids used in the moisture
profile retrieval in this work are included in Table 4.3.2.  The highest trapezoid has a value
of 0.05 at 100 mb and 200 mb and 0 at 20 mb.  The water vapor profile is not adjusted
above 20 mb due to the lack of sensitivity of the radiances to the small abundance of water
vapor in the stratosphere, assumed to be relatively constant.  The lowest function is
comprised of two straight lines, with a value at the surface and 850 mb of 0.05, and a value
of 0. at 700 mb.

In the moisture retrieval, we included channels between absorption lines in the 6.3
µm water vapor band that are sensitive to humidity throughout the troposphere.  These
channels provide sharper weighting functions (more localized absorption) than centers of
strong lines and make the problem more linear.  We also included channels on and off
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weak water vapor absorption lines in both the 11 µm and 8 µm windows, that are sensitive
to the water vapor continuum and improve sounding capability of the lower tropospheric
humidity, and in the 3.7 µm window, that provide improved sensitivity to low level
moisture during the day.  The S matrix is computed empirically exactly as in the
temperature profile retrieval.  The parameters determined from the surface and temperature
profile retrievals are assumed true and kept fixed in the calculations.

In constructing the noise covariance matrix, we included terms for uncertainties in
ground temperature, as in the temperature profile retrieval, as well as a term shifting the
entire temperature profile by a constant, as done in the noise covariance matrix used in the
determination of η (Eq. 4.3.10).

     Ozone Profile Retrieval

The solution for the ozone profile retrieval has the same form as that for the
moisture retrieval.  For the ozone retrieval, we used 5 trapezoid functions with values of
0.05, as in the water vapor retrieval.  The end points of the trapezoids are included in Table
4.3.2.  The same steps outlined in the previous section are used to compute the Jacobian.  It
is critical to solve for water vapor before ozone because ozone channels are sensitive to
absorption by boundary layer water vapor.  We selected 23 channels in the 9.6 µm  ozone
band for the ozone retrieval.  Uncertainties in surface parameters, temperature profile, and
water vapor profile are included in the ozone noise covariance matrix.

Subsequent to the ozone profile retrieval, the 4 retrieval steps are repeated, using all
retrieved quantities as the first guess.  This produces a small improvement in results
because the surface parameter retrieval, while not highly sensitive to temperature and
moisture profiles above the boundary layer, has some residual sensitivity to these
parameters.  Likewise, the temperature profile retrieval and all other steps benefit from
improvements in all other variables.  The results do not change appreciably if we repeat the
retrieval steps a third time.

    Retrieval of Cloud Properties

The observed radiance for channel i, Ri, in a scene with j different cloud types is
given by

Ri = 1− α j
j

∑








Ri,CLR + α j

j
∑ Ri,CLD,j    , (4.3.56)

where α j is the fraction of the scene (as seen from above) covered by cloud type j, R i,CLR
is the clear-column channel i radiance (i.e., the radiance emerging from the clear portion of
the scene), and Ri,CLD,j  is the channel i radiance emerging from the cloudy portion of the

scene covered by cloud type j, (Chahine, 1982).

The computation of Ri,CLD,j  for a given scene is complex due to the detailed

spectral absorption and reflection properties of clouds, cloud morphology within the field-
of-view, and geometric shadowing factors.  If we assume plane parallel cloud formations
and assume nadir viewing, Ri,CLD,j  can be expressed as
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Ri,CLD,j = τicj
Ri(pcj

)τi(pcj
) + εicj

Bi(Tcj
)τi(pcj

) + Bi[T(p)]
dτi

dlnp





pcj

o∫ dlnp

+ ′ρicj
Hi ′τi pcj







cos θo,

(4.3.57)

where R i ( p
c

j
)  is the upwelling radiance at cloud top pressure pcj , and τicj

 and εicj
 are

respectively the transmissivity and emissivity of cloud type j at channel frequency ν
i
,

B
i

Tcj( ) is the Planck function evaluated at channel frequency ν
i
 and cloud top

temperature  T
c

j
, ′ρ

ic
j
 is the cloud bi-directional reflectance of solar radiation incoming at

solar zenith angle   θ
o
 and outgoing in the direction of the satellite,  ′τ

i
( p

c
j

) is the two

path atmospheric transmittance from the top of the atmosphere to the cloud top pressure
p

c
j
, and H

i
 is the solar irradiance.  In Eq. 4.3.57, the first term represents upwelling

radiation from below the cloud that passes through the cloud; the second term represents
radiation emitted by the cloud that is transmitted by the atmosphere to the satellite; the third
term represents that portion of the radiation absorbed and emitted by the atmosphere above
the cloud, and the fourth term represents solar radiation reflected by the cloud in the
direction of the satellite.  We have neglected a small term due to downwelling thermal
radiation reflected off the cloud in the direction of the satellite.  

If there is only one cloud type in the scene, Ri,CLD,1 can be expressed as

  

Ri,CLD,1 = τic1
Ri,CLR + εic1

Bi(Tc1
)τi(pc1

) + (1− τic1
) Bi[T(p)]

pc1

o∫
dτi

dlnp






dlnp

+ ′ρic1
Hi ′τi(pc1

)cos θo .

(4.3.58)

When doing cloud property retrievals, we limit the channels to frequencies less than
1250 cm-1, for which the last term in equation 4.3.58 is not significant.  If we make the
approximation that  τ

ic
1

= (1 − ε
ic

1
) , then equations 4.3.56 and 4.3.58 can be combined to

give

Ri = 1− α1εic1( )Ri,CLR + α1εic1( ) Ri,CLD
B pc1( )  (4.3.59)

where  R
i , CLD
B

( p
c
1

)  is the radiance one would get from a black cloud τ
ic

= 0 , ε
ic

= 1( )
at cloud top pressure p

c
1

.  It is apparent that the term α1 ε ic1
 appears only as a product in

equation 4.3.59.  Therefore  α and ε ic  cannot be determined independently from each
other, but only as their product, which can be thought of as a radiatively effective cloud
fraction that may be a function of frequency.  To the extent that  ε ic  is a function of

frequency, one can express the frequency dependent term α1ε ic1
 as αεcν( )1F1 ν( ) where
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( αε
cν

)1  is a representative value of the effective cloud fraction α
1

ε
c
1

at a given frequency

ν , andF1 ν( )  expresses the frequency dependence of 
εcν
εcν

 .

If we consider the case of two cloud types, where we again assume
τ ic2

= (1 − ε
ic

2
) , then the radiances can be written as

R
i

= (1 − αε
i , 1

− αε
i , 2

) R
i , CLR

+ αε
i , 1

R
i
B

( p
c
1

) + αε
i , 2

R
i
B

( p
c
2

) (4.3.60)

where αε
i , 1

 and αε
i , 2

 are radiatively effective cloud fractions for the clouds at  p
c
1

 and

p
c
2

.   For the higher cloud at p
c
1

,  αε i,1 = α1 ε
ic

1
  as before.  On the other hand, for the

lower cloud

αε i,2 = ε
ic

2
[α

2
+ (1 − ε

ic
1

)α
1

α
12

] (4.3.61)

where α
12

 is the fraction of the area covered by cloud type 1 which is under- covered by

cloud type 2.  In equation 4.3.61,  ε
ic

2
 multiplies the cloud fraction for layer 2 as seen

from above, which is comprised of two parts:   α
2

 being the fraction of the scene covered

only by clouds in layer 2, and  (1 − ε
ic

1
)α

1
α

12
 being that part of the scene covered by

clouds of both type 1 and type 2, which is seen through cloud type 1, with transmissivity
(1 − ε

ic
1

).  If either ε
ic

1
 is independent of frequency or  α

12
 is the same for all fields of

view, this situation corresponds to two cloud formations.  In the first case, the radiances are
equivalent to a well defined, frequency independent amount of each type of black cloud.  In
the second case, cloud type 1 has a constant spectral dependence in each field of view
which combines properties of cloud types 1 and 2.  To the extent that  (1 − ε ic1

) is

frequency dependent, and α12  depends on field of view, this situation actually contains
three cloud formations, because the spectral dependence of radiances in areas covered by
clouds at both levels is different from that of clouds at either of the two levels, in a manner
that is field of view dependent.  The significance of this with regard to determination of
clear column radiances remains to be tested.  With regard to determination of cloud
parameters, the spectral dependence of  αε

i , 2
 contains the product of two spectrally

dependent terms ε
ic

2
and ε

ic
1

.  To first order, we can still write αε
i , 2

= αε
c
2

F
2

( ν )  but

care must be taken in interpreting F
2

( ν ).

We have currently attempted cloud parameter retrievals using the AIRS team
simulations, which had two layers of clouds with constant known spectral emissivity
(=0.9) with α

12
 equal to zero for all fields of view.   Observations in each of the three

fields of view k=1,3 used to do cloud clearing were used to determine the cloud
parameters.  The channel radiances Ri,k  can be expressed as

Ri,k = 1− αε( )1k − αε( )2k( )Ri,CLR + αε( )1kRi
B pc1( ) + αε( )2k

Ri
B pc2( )      (4.3.62)
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The cloud parameter retrieval is performed after all other parameters are solved for,
in an exactly analogous manner to that of all other retrieval steps.  Given a surface skin
temperature, surface spectral emissivity, and atmospheric temperature-moisture-ozone

profile, R
i , CLR

 and Ri
B(pcj

) can be readily computed.  The only unknowns in equation

4.3.62 are  αε( ) jk j = 1, 2 ; k = 1, 3, and p
c
1

 and p
c
2

.  We use observations Ri,k  in the 3

fields of view for the 15 µm  and 8-12 µm  channels used to determine η to solve for these 8
variables.  The noise covariance matrix  N  used to retrieve cloud parameters, which
represents both noise in the observations and uncertainties in the computed values of
R

i , CLR
, is taken to be identical to that used to determine η   (Eq. 4.3.10).

Given the mth iterative cloud parameters  αε
1k
m

, αε
2 k
m

, p
c1
m

, p
c 2
m   we define

Yik
m ≡ Ri,k − Rik

m = Ri,k − Ri,CLR( ) + αε jk
m

j=1,2
∑ Ri,CLR − Ri pcj

m( )( )                     (4.3.63)

where  Ri,k  is the observed channel i radiance in field of view k and Rik
m is computed

from the mth iterative parameters.  This gives rise to the iterative equation

Y
ik
m + 1 − Y

ik
m = Ri,CLR − Ri(pc

m
j
)











j = 1,2

∑ ∆αε
jk
m + αε

jk
m

−∂Ri(∂pcj
)

∂pcj





















j = 1,2

∑ ∆p
cj
m

= S
ik , ∆αε

jk

m









j = 1, 2
∑ αε

jk
m + S

ik , ∆p
c

j

m










j = 1, 2

∑ ∆p
c

j

m
(4.3.64)

where the terms in brackets are the appropriate Jacobians, which are computed empirically

as are all other Jacobians.  It should be noted that if  αε
jk

 (for all k) and/or 
∂R

i
∂p

c
j

  (for all i)

are small for a given  p
c

j
 , the Jacobian for that cloud top pressure will be small and that

cloud top pressure will be contained primarily in a heavily damped mode and not be
changed significantly from the initial guess.   In the AIRS team simulations conducted thus
far, the second cloud formation usually contained small amounts of low clouds, and p

c
2

was in general not well determined from the data.  

For our retrievals, the first guess cloud top pressures were taken as 350 mb and
650 mb, and the first guess effective cloud fractions were taken as 0.25 for each cloud type.
The solution was constrained such that  p

c
1

≥ 100 mb , p
c
2

≤ p
s

− 50 mb  where p
s
 is the

surface air pressure.  In addition αε1,k + αε2,k was constrained to be ≤ 1.0.  If the second

cloud fraction is either set very small in the first guess, or becomes very small in the
retrieval, one can no longer determine useful information about the second cloud top
pressure.
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Product Error Estimates
Error estimates of AIRS team products, on a retrieval by retrieval basis, are an

important part of the dataset.  This involves estimating likely sources of error and
propagating them through the retrieval process.

    Clear       column       radiance       error       estimates   

The most straightforward example of error estimation in our retrieval is the estimate
of the channel error covariance matrix of the cloud cleared radiance.  Obtaining cloud cleared
radiances, including their error estimates, is a critical step in the retrieval of other geophysical
parameters from AIRS because they are included in the noise covariance matrix of each
retrieval step.  The clear column radiances are also an important product for those desiring to
do radiance assimilation using AIRS observations.

The clear column noise covariance matrix N̂ is given in Eqn. 4.3.48.  The predicted

error in clear column radiances,   R̂i,l, for channel I and case   l  is given by the square root of

the diagonal term of the clear column radiance noise covariance matrix, N̂:

  
δR̂i,l = NE∆Ni

2 A ηi,1,ηi,2( )l
2 + γ ∆ROBS,i,l ∆η∆ ′η( )l ∆R'OBS,i,l[ ]2




1/2

.  (4.3.65)

This prediction has a strong case dependence resulting from the noise amplification factor,

  
A ηi,1,ηi,2( )l; differences in the vector   ∆ROBS,i,l , corresponding to differences in the fields of

view 
  
Ri,1 − Ri,k( )

l
; as well as differences in the predicted error covariance   ∆η∆ ′η( )l.  There

is also a strong channel dependence resulting from NE∆Ni , ∆ROBS,i , and A ηi,1 , ηi,2( ),
which is much smaller for channels that do not see clouds.

    Product       error       estimates

In each retrieval step we solve for the change in coefficients of functions which will
minimize the radiance residuals.  In Eqn. 4.3.34, an estimate of the uncertainty of these
coefficients, ∆B̃j

n  is given. ∆B̃j
n  has a strong case dependence due to the propagation of

the clear column radiance error in the noise covariance term (see Eqn. 4.3.41).  The
uncertainty coefficients are transformed in exactly the same manner as the solution
coefficients, ∆Bn , to obtain the propagated error in the geophysical parameters:

δAn = U ⋅ ∆B̃n = U ⋅ λn

λn + ∆λn   .          (4.3.66)

The error estimates are calculated at each retrieval step and each iteration; however,
they are updated estimates, not a change to an existing error estimate.  Errors in A (δA)
propagate into geophysical parameters according to

δXn+1 = Fj ⋅ δAj
n( )2

j
∑             (4.3.67)
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In addition, we need to add another component of the uncertainty due to the non-
uniqueness of the solution.  This null-space error, δXN , is derived from a large ensemble
of cases.  In general, the propagated error estimate is given as

δXn+1 = δXN( )2 + Fj ⋅ δAj
n( )2

j
∑   .                  (4.3.68)

This equation is analogous to the equation for the solution, Eqn. 4.3.17.  For example, for
the temperature profile, we use 13 trapezoidal functions to solve for the change to 13
coefficients, ∆Aj .  We would compute the error estimate for the temperature column with
our estimates of δA  as follows:

δTn+1 p( ) = δTN p( )( )2 + Fj p( ) ⋅ δAj
n( )2

j=1

13

∑           (4.3.69)

For moisture estimates we solve for a % change in the column density that best
matches the observed radiances.  The moisture error estimates are calculated in an
analogous manner to the solution coefficients (given in Eqn. 4.3.55) and given by

δqn+1 p( ) = qn p( ) ⋅
δqN p( )
q p( )







2

+ Fj p( ) ⋅ δAj( )2
j

∑        (4.3.70)

    Closed-loop        operation

Our experience with simulated radiances has shown that improving the noise
covariance matrix in the retrieval and cloud-clearing steps will improve the results.  The
case dependent error estimates, δX , can be used to compute the computation noise
covariance matrix, Nc , instead of the ensemble estimates that are currently used.  The error
estimates will allow the case dependence of the cloud cleared radiance error estimate to
propagate through the retrieval into error estimates for the geophysical retrieval.  These
estimates can then in turn, be used to re-estimate the cloud cleared radiance estimates
through the updated and case dependent value of Nc .  Difficult cases (i.e., low scene
contrast) may benefit substantially from more realistic weighting of the channels in the later
retrieval stages.
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5. Tuning and uncertainty estimates

5.1 Tuning (McMillin)

To be useful for numerical forecasts, AIRS data must be consistent with data from
other sources.  Errors in both the AIRS data and the other data contribute to systematic
differences between different data sets.  These are removed by a statistical adjustment
procedure.  There are errors in the AIRS data that can be recognized in the data and
removed.  A linear shift in the detector array is one example.  It is assumed that these
corrections have been made.  It is also assumed that a set of match data are available in
which there are pairs of radiances, one calculated from some measure of truth and one
observed by the AIRS.  The problem is to make an adjustment to remove the systematic
differences.  

Before proceeding, it is useful to discuss the calculation procedures.  Although the
calculation of radiances is easy using the procedures of section 3 once the atmospheric state
is completely specified, radiosondes and other sources of information often provide an
incomplete description of the atmospheric state.  For example, a radiosonde specifies the
temperature and water vapor in the lower part of the atmosphere.  The radiances depend on
the these data as well as the upper atmosphere and the surface skin temperature.  These can
be obtained from the satellite retrieval.  Values of other gases such as ozone can be
obtained from the retrieval as well.  When this is done, the adjustment will preserve the
original, theoretical relationships between the atmospheric state and the calculated values
for these variables, but will adjust the theoretical relationships for those variables for which
an measure of truth is available.  

Approach
An obvious way to do the adjustment is to use measured values to predict the

calculated values.  It is common to adjust the measured values because the data are
frequently used in an iterative retrieval procedure in which the radiances are calculated at
each iteration.  This means the adjustment needs to be done only once.  Using normal
regression for the adjustment has some problems.  One is that the regression is likely to be
numerically unstable.  A second is that the coefficients are physically unrealistic.  It is
reasonable to expect that the regression coefficients should be slight perturbations to the
identity matrix.  That is, the calculated radiance should depend on the measured radiance
with a coefficient that is nearly unity, and the dependence on other channels should be
small.  This is the form one would expect for a slight error in the weighting function
height.  The desired solution is given by the shrinkage operator (Oman et al.. 1982).  The
particular derivation is found in the appendix of Crone et al..  (1996).  The shrinkage
estimator, Cs is obtained by finding the C that minimizes the trace of [(C-C0)

T (C-C0)]
subject to the constraint that the trace of [(Y-CX)(Y-CX)T] is held constant.  This can be

done by setting the derivative 
∂

∂C
Tr C C C CT( ) ( )− −[ ]0 0  equal to zero.  Doing this gives

2 2 2 00( ) ( )C C YX CXXT T− + − + =γ (5.1.1)

which leads to
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C YX C XX Is
T T= + + −( )( )γ γ0

1 (5.1.2)

For many purposes, this form of the equation is fine and is the one used for current
sounders which have tens of channels.  However, for a high resolution instrument like
AIRS, the number of channel increases by a factor of about 100.  Not only does the large
number of channels increase the computations, the larger number, coupled with the fact
that more channels are similar, increases the numerical instability.  The retrievals are being
done with linear transformations such as eigenvectors or “super channels”, which are
averages of channels that are highly correlated with each other.  Thus they contain no
unique information, but are averaged to reduce the noise.  If we consider a linear
transformation of X, then we have the equations

Y  =  C X = C0t E (5.1.3)

which can be solved to give

C CE EEt
T T

0
1= −( ) (5.1.4)

provided that the inverse exists.  This transformation is needed because the initial
coefficients are known in the form of C0, but the values of Ct0 are required to solve the
equation.  In some cases the inverse may have problems so it is best to avoid the problem
by writing equation (5.1.2) as

C YX C C XX C XX XX Is
T T T T= + + − + −( )( )γ γ0 0 0

1 (5.1.5)

which can be rearranged to give

C C Y C X X XX Is
T T= + + − + −

0 0
1( ) ( )γ (5.1.6)

which is the same as ridge regression on the quantity (Y-C0X) instead of Y.  In this form,
a linear transformation becomes

C C Y C EX X E EXX E Is t t
T T T T= + + − + −

0 0
1( ) ( )γ (5.1.7)

which leads to

Y C Y C EX X E EXX E I EXt t
T T T T− = + − + −

0 0
1[( ) ]( )γ (5.1.8)

In this form, it is possible to replace Ct0E with C0 to give

Y C X Y C EX X E EXX E I EXT T T T− = + − + −
0 0

1[( ) ]( )γ (5.1.9)

This is a particularly attractive form when C0 consists of the identity matrix.  We
note that the problem is trivial when the linear combination consists of the eigenvectors,
because EET is the identity matrix for that case.  However, the form given above is
completely general.  It may turn out that the best transformation to a smaller subspace is to
perform a stepwise regression.  The exact subspace is a detail that will be resolved when
data with the appropriate error structure (simulated or real) become available.

In use, the value of gamma is empirically  adjusted to give small departures from
the expected values.  The result is a set of coefficients that give nearly the same reduction in
variance on the dependent set as is given by normal regression, but that have the desirable
physical property that the calculated value for each channel is given by the measured value
plus small corrections.  Procedures for doing constrained regressions have been
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documented in a series of papers (McMillin et al..  1989 , Crone et al..  1996, Uddstrom
and McMillin 1994a, Uddstrom and McMillin 1994b).

Use of coefficients

Once the coefficients are available, they can be used to make adjustments to the
radiances.  The adjustment takes the form

  Y Y C C X C C X= − + + +[ ( ) ] ( )0 0 0 0           (5.1.10)

where Y represents the adjusted radiances, Y0 represents the sample mean, C0 represents
the initial coefficients, X represents the measured radiances and other predictors, X0

represents their mean values, and C is given by

C Y C X X E EXX E I ET T T T= − + −[( ) ]( ) .0
1γ               (5.1.11)

In this form, values of C represent minor perturbations to the values of C0 which perform
most of the prediction.  For example, C0 would generally have a value of 1.0 for the
channel being corrected, and a value of zero elsewhere.  The values of C would represent
the empirical adjustments.

5.2. Simulation System (Haskins, Aumann)

The current software has a full level 0 to level 2 data product simulation with three
goals in mind: (1) core algorithm performance is based on the simulation, (2) robustness
testing of the AIRS data product algorithms is based partly on simulation, (3) data product
validation requires an extensive simulation effort.  The simulations are to be as realistic and
challenging as possible as well as extensive enough to provide a complete set of exception
conditions. The components in the AIRS simulation are described in Figure 5.2.1.
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FIGURE 5.2.1: AIRS SIMULATION SYSTEM
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This discussion will focus on the simulation of level 2 data.  The AIRS simulation
effort involves several independent groups within the AIRS Science Team:

1. The geophysical data are generated by team members at NOAA's National Center
for Environmental Prediction (NOAA/NCEP) using experimental mesoscale
models. The model used for the current simulation comes from the forecast for
July 1, 1993. It covers about 3080 km in longitude, 4700 km in latitude with a 40
km spacing grid, and is centered on the western part of the United States. At every
grid point the model lists the temperature, water vapor, and fractional cloud cover
as functions of pressure between 30 mb and the surface. These data are called Level
2 geophysical data by EOS.

2. The simulation team selects satellite tracks from the mesoscale model and converts
them to the radiances (level 1B) which the AIRS, AMSU and HSB instruments
would observe. All important instrument-related effects, such as detector noise,
gaps in the spectral coverage, wavelength, and the spectral response function of
each channel, are included in the calculations of the Level 1 data.

Three types of data are distributed to facilitate the task of the algorithm developers:

1. Training data: This is a set of about 2000 temperature/moisture profiles which are
statistically representative of the mesoscale model data.

2. Truth data: This is both Level 1 data and the exact retrieval solution (the Level 2
data which was used to create the Level 1 data). The developers use this data to test
the accuracy of their algorithms.

3. Test data: This is Level 1 data, which is statistically similar to the Level 1 truth data,
but for a different ensemble of cases which are known only to the simulation team.

The algorithm development teams return their results from the test data and the
truth data, together with the software used to obtain the results, to the simulation team. The
retrievals are evaluated for accuracy. The software is evaluated for computer resource
requirements (CPU and I/O utilization) and compliance with reasonable software
engineering standards.  Periodic meetings of the AIRS Science Team are used for
discussions of simulation procedures, retrieval accuracy, and retrieval resource
requirements.

The algorithm development, as described above, was started in 1992. The initial
tests were simple: Night time, cloud free, surface with no elevation (i.e., at 1000 mb
pressure) and with known, wavelength-independent emissivity and reflectivity. Since then,
the simulation has advanced to include daytime, wavelength-dependent and unknown
surface emissivity and reflectivity, realistic topography, and cloud covered scenes.

TOVS data from HIRS 2/MSU indicate that 45 percent of the time, there are clear
conditions, about 35 percent of the data are partly cloudy, but the retrievals are acceptable,
while the remaining 20 percent of the data are too cloudy for the HIRS 2/MHS to produce
usable retrievals. The first test data including clouds was released to the algorithm
development teams in August 1994. This test was called the single layer gray cloud test.
The statistical distribution and cloud granularity were patterned using the statistics obtained
from the TOVS data. The level 2 truth was taken from a 6-hour forecast using the NCEP
Eta model for July 19, 1993. For this test, the simulation program used Level 2 data from
four satellite tracks crossing the model area from south to north (tracks A, B, C, D in
Figure 5.2.2) and converted them to the spectral radiances as described above. (The
curvature of the tracks is an artifact of the mercator map projection).
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FIG 5.2.2: SIMULATION TRACKS

There are 45 cases taken across each track, each covering as area the size of a nadir
AMSU A footprint.  The model forecast for the center of the footprint was taken as truth
across the entire footprint.  AMSU-A radiances were simulated for this spot, as well as
AIRS and HSB radiances. for a 3x3 array of spots within the AMSU-A spot.  These
smaller spots were assumed to differ only in the amount of clouds, which behaved
identically in all 9 spots (i.e. different amounts of the same type of cloud).

As this was the first simulation of cloudy data, the data set was limited to two
layers of clouds, but a single cloud formation and the clouds were simulated as spectrally
gray, i.e., the emissivity and reflectivity were unknown, but wavelength independent.
Figure 5.2.3 shows the fractional cloud cover averaged over the 9 spots for each of the 45
cases along track B. The fractional cloud cover in the AIRS FOV ranged from 20 to 90
percent. The cloud top pressure ranged from 850 mb to 100 mb. Figure 5.2.4 shows the
cloud liquid water content along track B. It averages about 0.01g/cm2, but exceeds 0.03 g/
cm2 near latitudes 44 and 52°N. The onset of precipitation is between 0.02 and 0.04 g/ cm2.
This data set represented a severe test of the ability of the combined infrared and
microwave sounding capability of AIRS/AMSU and HSB.
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Current Team Algorithm Simulation results (July 96)
Current simulation results of the AIRS Team Algorithm are summarized in Table

Figure 5.2.1 and a sample vertical profile of RMS errors for Track NB is presented in
figure 5.2.5.  Results are shown for temperature are for RMS layer mean temperature
errors in 1 km layers up to the tropopause, then 2 km layers.  Results shown for water
vapor are for RMS percent errors in layer precipitable water for 2 km layers up to 200 mb.
The statistics are broken out for each track and each step of the algorithm.  In the following
the first letter refers to night (N) or day (D).  The second letter refers to the track
(A,B,C,D).  The Track DP is the day ‘D’ track with two independent cloud formations.

Night Simulation Track NA NB NC
Retrieval

Stage
MW
only

RET
1

RET
2

MW
only

RET
1

RET
2

MW
only

RET
1

RET 2

Surface Temperature
RMS Error (°K) 1.6 0.4 0.1 2.7 0.5 0.1 3.2 0.8 0.2

Tropospheric Temperature
RMS Error (°K) 1.8 1.4 1.1 1.9 1.2 1.0 2.0 1.1 0.8

Total Water Vapor Column
Density RMS Error (%) 20.8 6.9 6.4 13.9 16.8 15.2 15.1 10.6 7.6

Total Liquid Water Column
Density RMS Error (%) 88.3 N/A N/A 100.0 N/A N/A 85.0 N/A N/A

Total Ozone Column
Density RMS Error (%) N/A N/A 1.8 N/A N/A 2.5 N/A N/A 3.7

Day Simulation
Track

DB DC DD DP

Retrieval Stage MW
only

RET
1

RET
2

MW
only

RET
1

RET
2

MW
only

RET
1

RET
2

MW
only

RET
1

RET
2

Surface
Temperature

RMS Error (°K)
6.1 1.2 1.2 7.5 1.2 0.7 9.0 0.8 0.6 9.0 2.1 1.2

Tropospheric
Temperature

RMS Error (°K)
1.7 1.3 1.1 1.5 1.1 0.9 1.7 1.2 1.0 1.7 1.3 1.2

Total Water Vapor
Column Density
RMS Error (%)

13.0 10.6 9.2 13.1 7.2 3.9 17.6 7.1 3.9 17.6 5.8 5.3

Total Liquid Water
Column Density
RMS Error (%)

86.0 N/A N/A 69.5 N/A N/A 98.8 N/A N/A 98.8 N/A N/A

Total Ozone
Column Density
RMS Error (%)

N/A N/A 2.1 N/A N/A 1.6 N/A N/A 2.1 N/A N/A 1.7

TABLE  5.2.1: SUMMARY STATISTICS FOR THE AIRS TEAM ALGORITHM
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Robustness Testing

The Simulation Team has the following additional simulations planned to test for
Core Algorithm Level 2  robustness:

1. Gradient Effects -- effects of inhomogeneous temperature, water, and emissivities
within the 9 AIRS FOVs

2. Cij effects -- errors associated with mis-alignment of the FOVs (current
specification is 99% alignment).

3. First Guess -- sensitivities to first guess fields
4. Multi-spectral non-gray Clouds
5. Viewing angle simulation
6. Channel outages
7. Frequency Shift
8. Calibration Errors
9. Tuning (see 5.1) -- used to account for radiative transfer errors
10. Optical Effects -- shifts in the Slit Response Function (SRF - see section 3.2)
11. Others as needed

Data product Validation
The simulation is one methodology to provide theoretically-based estimates of

parameter space errors.  For example, given a one degree error in temperature, how does
this effect the accuracy of, say, the ozone retrieval.  Also, the simulation can be used to
provide estimates based on formal error propagation analysis.
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6. Numerical Computational Considerations (Lee)

6.1 Parameter Description
The table 6.1.1 lists the products from the AIRS level 2 data processing software and the
major parameters (and parameter numbers) in the products.  The third column in the table
are the short description of the parameters and their units.  All the products will have
associated error estimates and/or quality flags.

Product
Number

Product name
Parameter name (parameter #) Short description

AIR04 Cloud product
Cloud cover (2062)
Cloud emissivity (2128)
Cloud top height (1423)
Cloud top temperature (2463)

Cloud fraction (unitless)
Cloud top spectral emissivities (unitless)
Cloud top pressure in mb
Atmospheric temperature at the cloud top in
K

AIR05 Humidity product
Humidity profile (1828)
Total Precipitable water (1869)

Water vapor profile (in gm-cm-2 unit, in 15
layers)
Total precipitable water in gm-cm-2 (this is
the integral of water vapor profile and does
not include cloud liquid water or ice.)

AIR07 Temperature Product
Temperature profile (1588)
Sea Surface Temperature (2523)
Land surface temperature (2481)
Land surface emissivity (2113)

Day/Night Land surface
temperature difference (2539)

Layer-mean temperature profile in K in 30
pressure layers
Sea surface skin temperature in K
Land surface skin temperature in K
spectral IR emissivities (linearly interpolated
between tie points)
Day/night (1:30 AM/PM) land surface skin
temperature difference in K

AIR08 Ozone product
Ozone concentration profile
(3690)
Total ozone burden (1332)

ozone column density profile in 3 layers in
Dobson units.
the integral of ozone profile in Dobson units.

AIR09 Cloud cleared radiances
Cloud cleared radiances(3683) AIRS spectral radiances that would have

been observed if there were no clouds.  This
product may be replaced by software to
compute the product because of data
volume.

TABLE  6.1.1 RETRIEVED PARAMETERS
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6.2 Data Storage estimates.

The table 6.2.1 has preliminary storage estimate for the AIRS level 2 data processing.   The
levels 0, 1A and 1B storage estimates were included for comparison.

Data KByte/Sec GByte/Day
AIRS/VIS Level 0 * 170.00 14.70
AMSU-A Level 0 * 0.25 0.022
MHS Level 0 * 1.41 0.122
AIRS Level 1A * 200.00 17.29
VIS Level 1A * 27.20 2.35
AMSU-A Level 1A * 4.85 0.42
MHS Level 1A * 19.00 1.64
AIRS Level 1B * 318.30 27.50
VIS Level 1B * 40.86 3.53
AMSU-A Level 1B * 1.86 0.16
MHS Level 1B * 13.66 1.18
AIRS Level 2 19.10 1.65
AIRS Level 3 # 0.56 0.048

Total 817.05 70.612

TABLE  6.2.1 DATA STORAGE ESTIMATE

*radiances (16 bits) and 5/10% (level 0/1) extra for engineering and other data
# 1x1 degree, twice daily, 100 fields

6.3 Data Processing requirements.

The table 6.3.1 shows preliminary estimate of floating point operations for the level 2 data
processing software.  The data processing requirement for the levels 1, 3, 4 is included here
for comparison and for completeness.

Processing Level
FLOPS

MFlop/Sec
I/O rate

KByte/Sec
AIRS Level 1 * 74.03 520.29
AMSU-A Level 1 * 0.05 1.20
MHS Level 1 * 0.16 1.54
Total Level 1 74.24 523.02
AIRS+ Level 2 1456.79 196.33
AIRS+ Level 3 100.00 24.41

Total 1705.27 1266.79

TABLE  6.3.1 DATA PROCESSING REQUIREMENT

*Assuming that Level 1 processing needs 1000 floating point operation per channel.
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6.4 Required input data.

The AIRS/AMSU-A/MHS level 1b data sets are the main input to the level 2 data
processing software.    There are various tables and coefficients data sets for many parts of
the software.   The following two table are the lists of auxiliary input data sets used for the
level 2 data processing.    Some of the data sets will be used for the level 2 data processing
and others will be used in the off-line validation software.

Input File Name Short Description
AIRS_TC AIRS Tuning Coefficients
AIRS_RTC AIRS Rapid Transmittance Algorithm Coefficients
AIRS_URF AIRS Upwelling Radiance Features
ANC_EDC_DEM 10 x 10 arc min Digital Elevation Map, employed as

backup for determination of surface pressure
ANC_DCW_Land/Sea Land/Sea Boundary data from ONC digitized maps
ANC_NAVY_DATABASE Navy 10 x 10 arc min database of surface elevation,

surface type and percent water
TOMS_GSFC_CLIM TOMS ozone climatology based on monthly profiles

(used operationally)

TABLE 6.4.1  STATIC INPUT DATA SETS (LEVEL 2 PROCESSING)
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Input File Name Short Description
MOD34_L3_30DY Gridded vegetation index for estimation of land

surface emissivity, 1x1 degree, monthly
MOD12_L3_96DY Gridded land cover type for estimation of land surface

emissivity, 1x1 degree, quarterly
ANC_NOAA/NCEP_SNOW/ICE Gridded snow and sea ice extent from AVHRR for

first guess surface emissivity over land and ocean,
1x1 degree, weekly

ANC_NOAA/NCEP_SST Gridded NCEP Reynolds blended sea surface
temperature climatology, 1x1 degree, weekly

ANC_NCEP_MRF Gridded analysis data of Medium Range Forecast
product, 1x1 degree every 6 hours (used in validation)

ANC_NCEP_PROF Gridded NCEP global model temperature, moisture
and ozone profiles 1x1 degree, every 6 hours (used
operationally)

ANC_NOAA/NESDIS_O3BUV2 Gridded Ozone profiles from SBUV-2/NOAA, 1x1
degree, daily

ANC_NOAA/NCEP_SURF Gridded NCEP Global Model Surface Parameters
(winds, relative humidity, pressure, air-sea
temperature differences, etc.), 1x1 degree, every 6
hours

ANC_NOAA/NESDIS_NDVI Gridded Level 3 NDVI Product created from
processing daily AVHRR GAC data, 1x1 degree,
weekly

ANC_NOAA/NCEP_SFC_OBS Surface Observations collected daily from NOAA’s
surface network of observation stations (including
ships & buoys), every 6 hours

ANC_NOAA/NCEP_RDSONDS_OBS In situ observations collected from radiosondes and
Rawinsondes, every 6 hours

ANC_EDC_LANDCOVER Surface land cover & vegetation type (to estimate
surface emissivities over land), quarterly

ANC_GSFC_O3TOMS Gridded Ozone profile from TOMS, 1x1 degree,
daily (used in validation)

TABLE 6.4.2  DYNAMIC INPUT DATA SETS (LEVEL 2 PROCESSING)
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7. Quality Control, Diagnostics, and Exception Handling
( Kalnay / McMillin / Susskind / Haskins /Lee )
There are four phases of quality control to be implemented on the AIRS, AMSU,

HSB data for Level 2 processing:

• pre-retrieval quality control
• profile rejection during the retrieval phase
• Assimilation-based quality control
• statistical error-bar assessment.

Pre-retrieval quality control consists of automated limit-checking on input radiances
as well as the use of EOFs to characterize bad points.  Profile rejection is based on the use
of residuals, or difference between computed and measured radiances, to reject poorly-
behaved retrievals. Assimilation-based quality control uses proven NCEP procedures
applied directly to the radiances.  Finally, an EOF technique will be used to statistically
characterize the error for the Level 2 Core Products.  All of these quality control indicators
will be provided to the data users.

7.1 Pre-retrieval Quality Control (Lee)

The input data will be subjected to a series of automatic internal quality checks
before being passed to the Level 2 retrieval stage.  Failure to pass any of these quality
checks will cause the corresponding AMSU footprint to be skipped and generate a
message in the internal quality check log.  A non-exhaustive list of internal input data
quality checks follows:

Failure Pre Level 2 Retrieval Action
Auxiliary data missing Log what is missing, notify DAAC, time-out if no corrective action
Auxiliary data dropout Log dropout. If a threshold for maximum duration of allowed dropout

is exceeded, notify DAAC
AIRS/AMSU/HSB
data missing

Log what is missing, notify DAAC, time-out if no corrective action

AIRS/AMSU/HSB
full data dropout

Log dropout. If a threshold for maximum duration of allowed dropout
is exceeded, notify DAAC

AIRS/AMSU/HSB
partial data dropout

Log dropout. If a threshold for maximum duration of allowed dropout
is exceeded, notify DAAC

AIRS/AMSU/HSB
invalid data

1. Log particulars.
2. Negative Radiance Values
All radiances must be non-negative.  A negative value would arise from
an instrument problem or calibration failure.
3. Too Large Radiance Values
There is an absolute limit beyond which a radiance value is non-
physical.  There will be a threshold defined for each instrument
(AIRS/AMSU/HSB) and possibly for ranges of channels within AIRS.
Values which are too large indicate an instrument problem or mis-
pointing (i.e., looking at the sun) or calibration failure.
4. Insufficient Range of Radiance Values
Selected channel pairs should exhibit radiance values which differ by at
least a minimum threshold (and in the proper sense).  Insufficient range
indicates an instrument problem or calibration failure.

TABLE  7.1.1 INTERNAL INPUT DATA QUALITY CHECK FAILURE ACTIONS
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Upon detecting a Level 2 retrieval failure, the software will gracefully recover and
move on to the next valid AMSU footprint. An abort should be necessary only in the case
where the DAAC has not provided the required valid data sets.

Use of EOFs to Characterize Input Radiances (Haskins/McMillin)
We have also studied the use of a pre-computed set of Empirical Orthogonal

Functions (EOFs) to use as radiance filters for corrupted radiances.  The technique is
similar in spirit to using Fourier analysis time-series techniques for data quality control.
The EOFs provide a more economical framework.

For clear radiances and the microwave radiances, the technique is straightforward.
Given a statistical ensemble of radiances, the EOFs are calculated off-line based on the
covariance.  Then the current radiance profile is projected against the EOFs and any three
sigma radiance is rejected.

For cloudy radiances, we plan to explore a technique described in section 4.2 using
a cloud-contaminated ensemble of radiances.  Clouds introduce a greater individual
uncertainty in the variance of each tropospheric channel.  However, the channel-to-channel
variances are quite similar.  For example, the surface sounding channels will be all
approximately affected equally by clouds.  It is the channel-to-channel variance we will
exploit through the use of EOFs as outlined above (see Haskins, et al., 1996).

7.2 Rejection criterion (Susskind)

A major source of error for the Level 2 Core Products is an inaccurate cloud
clearing.  In the following discussion we will focus on that aspect. In the case of
indeterminate values of η, spurious solutions can occur which match the infra-red
radiances but are incorrect.  Under these conditions, there will be a mismatch between the
microwave radiances, unaffected by clouds, and the infra-red clear column radiances,
incorrectly affected by clouds.  This mismatch can show up in two ways.  First, the
temperature solution obtained from an AMSU only retrieval may produce significantly
different results from that obtained with the combined AIRS/AMSU temperature profile
retrieval.  Second, the RMS differences of the observed minus computed brightness
temperatures for the AMSU channels resulting from the coupled AIRS/AMSU
temperature retrieval may be large.  We reject the retrieval as having a spurious cloud
solution if either
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for pressures pk  ≥ 500 mb, where T(p) is the final AIRS/AMSU temperature profile and
T pA( )  is an AMSU only temperature profile determined after the first pass through the
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where 
  
Θ ΘA A, ,

˜
l l−( ) represents the differences of the observed AMSU brightness

temperatures and those computed from the final solution T p( ) , for the L AMSU-A
tropospheric sounding channels 3-11, and   Wl are inversely proportional to the channel
noise.  This test did not reject any of the well conditioned cases we tried.

Another rejection criteria was discussed in section 4.3. If a low contrast overcast
condition exists, then Eq. 4.3.11 will be used to reject those cases.

A similar condition exists if a cloud formation is constant within all fields of view.
In a multiple cloud formation case, this can be detected by calculating a clear radiance
estimate, Ri,CLR with the reconstructed clear column radiance, R̂i , for the cloud clearing
channels.  The channels are weighted with the inverse of the diagonal of the noise
covariance matrix, Wii = 1/Nii, where Nii is given by Eq. 4.3.10.  The profile should be
rejected if the root-mean-square difference exceeds a threshold:
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7.3 NCEP Quality Control (Kalnay)

The NCEP operational data assimilation and forecasting system will provide two
unique contributions to AIRS: an advanced Quality Control (QC) performed within the
operational data assimilation in near real time, and the monitoring of the results of this QC,
which provides an early warning of any problem detected.

There are basically two major approaches to the sounder QC: a) comparing
retrievals to collocated data (such as rawinsondes); b) direct QC of the radiances from the
AIRS ‘superchannels’. The concept of ‘superchannels’ is still being defined by the AIRS
Science Team but a superchannel will be either be a linear combination of selected AIRS
channel or a selected subset of the entire channel set. The basic aim of the superchannel set
is to fit into the computational envelope at NCEP.

The two QC approaches are complementary, but the second approach is much
more powerful for several reasons discussed later, and in practice it is best carried out
within the operational assimilation of the radiances. The 3-D variational direct assimilation
of TOVS radiances, implemented at NCEP on October 1995, has provided both the
infrastructure for this approach, and a clear proof of its power.

The results of the monitoring will be posted in real time on the NCEP file server,
and will be available in several formats, including a rotating monthly/seasonal archive and
graphic display of the fit to the first guess of each of the AIRS channels or superchannels
that will be used in the data assimilation, and the rate of data rejection by the QC for each of
the channels.  This will provide the AIRS team the ability to easily assess the status of the
instrument, an early warning of detected problems, and the ability to test the impact of
corrective measures, or improvements in the algorithms or selections of the superchannels.
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The 3-D variational assimilation of radiances and the present
TOVS radiances QC
The 3-D variational (3DVAR) direct assimilation of cloud-cleared radiances

implemented at NCEP in October 1995 (Derber and Wu, 1996) has resulted in the largest
increase in forecast skill ever obtained in either the Northern Hemisphere (NH) or the
Southern Hemisphere (SH) due to any other single change in more than a decade (Fig.
7.3.1).  In fact, it has provided the first large, significant positive impact in the NH, and
greatly improved the impact that TOVS data already had in the SH.  The reasons for this
large impact are better understood when looking at the cost function minimized every 6 hr
in the operational data assimilation:

J x x B x x F x y O M F x y J dxdyda FG

T

a FG a obs

T

a OBS BAL= −( ) −( ) + −( ) + −( ) +[ ]− −∫ 1 1( ) ( ) ( ) σ
(7.3.1)

where xa  represents the full 3-dimensional analysis in the model variables (about one
million degrees of freedom), xFG is the first guess (a 6-hour forecast), F(xa) is the
transformation of the analysis variables into observed variables via the forward model,
yobs are the observations, and  the last term is a constraint on the time changes of the
divergence equation, which maintains a balanced state and eliminates the need in the NCEP
system to perform nonlinear normal mode initialization.  The matrices B, O and M are the
error covariance matrices for the model error, the observational error, and the forward
model F respectively.



AIRS Team Level 2 Algorithm Theoretical Basis Document

Ver 1.7 18 Sept 199799

MRF RAD

88 89 90 91 92 93 94 95

84 85 86 87 88 89 90 91 92 93 94 95
40

50

60

70

80

40

50

60

70

80

5-Day Forecasts Jun-Aug SH

5-Day Forecasts Jun-Aug NH

A
no

m
al

y 
C

or
re

la
ti

on
 (

%
)

A
no

m
al

y 
C

or
re

la
ti

on
 (

%
)

Year

Year

FIG 7.3.1: EVOLUTION OF THE 5-DAY FORECAST SKILL (ANOMALY CORRELATION) FOR THE NOAA/NCEP
OPERATIONAL FORECASTS FOR THE JUNE-AUGUST SEASON FOR THE LAST DECADE USING TOVS RETRIEVALS
(MRF).  FOR THE YEAR 1995 AN EXPERIMENTAL SYSTEM IN WHICH THE RADIANCES WERE DIRECTLY
ASSIMILATED IS ALSO SHOWN (RAD)  TOP: NH; BOTTOM:SH.

The first term represents the fit of the analysis to the first guess, the second the fit
of the analysis to the observations, and the third is measures its lack of balance. The
minimization of this objective cost function ensures that the analysis is the 3-D model state
which is closest to  the first guess and to the observations (and also maintains a proper
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balance).  The transformation of the analysis variables to the observed variables is crucial:
with this approach any type of observation can, in principle, be used in its original form
(such as satellite radiances), rather than produce model variables from observed radiances
through retrievals.  

There are several advantages to the direct use of cloud-cleared radiances:

1. QC of the radiance data is much more efficient than the QC of the retrievals;
2. biases in the measurements can be detected and corrected, for the same reason;
3. unlike the retrieval problem, which is ill-posed because the radiances do not provide

enough information for a vertical sounding, the assimilation of radiances is well
posed;

4. all the 3-dimensional data (satellite and non-satellite)  are used simultaneously,
which produces a more accurate analysis, and can be considered, in turn, as the best
possible retrieval.  The assimilation of radiances uses only the information
contained in the data and, unlike the retrieval process, it is not contaminated by
inconsistent guesses and statistics.

The reason that QC of the radiances is more effective is that the forward model
provides a very accurate first guess for each measurement, and the errors characteristics for
the radiances are cleaner, allowing the detection of small errors.  By contrast, in the
retrievals the QC is difficult because the information and the errors originating from the
different channels and the algorithms are all scrambled together.

In the present operational assimilation of TOVS radiances (Derber and Wu, 1996)
there is a careful determination of the bias between the observed and simulated data
(discussed in more detail in section 8.4 on the AIRS model validation).  The operational
QC of TOVS radiances is made by two tests: a gross test (checking whether the
observations are within a reasonable range), and (most important) a check against the
predicted values based on the first guess and nearby observations.  The decision whether to
accept or reject a measurement is based on the ratio between the observational residual (the
difference between the predicted and observed radiance), and the expected error standard
deviation for that channel.  This quantity is modified by the position across the track of the
scan, whether it is over land or sea, the elevation, the difference between the atmospheric
model and the real orographic elevation, and the latitude (the criterion is made tighter in the
tropics).  Some of these modifications are to eliminate poor observations, and some to
eliminate situations where the forward model may result in deficient simulated
observations.  The data rejections are performed independently for each channel.

These checks provide a rich and precise information source about the error
characteristics of the TOVS channels: the difference of the observed and simulated
radiance, its bias, the dependence on the orbital parameters, geography, etc.  These data
provide the most powerful basis for real time monitoring of the quality of the data, by for
example monitoring the rate of data rejection for each channel, and also for the
improvement of the algorithms

Planned AIRS QC and monitoring
Obviously the present TOVS operational data assimilation system discussed above

provides only an example of how the QC of the AIRS data and the monitoring will be
carried out.  A lot will depend on the choice of AIRS data that will be actually used in the
data assimilation (see the AIRS model validation section 8.4).  Here we assume that an
appropriate data compression will be chosen by the science team, and implemented by the
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AIRS operational team.  We denote the result of the data compression (if any is deemed
necessary) as superchannels.

Assuming that the superchannels will provide the most significant information
from AIRS, we plan to follow a similar path as TOVS, but with parameters appropriately
adapted to AIRS:

a) The forward model (which the science team has to develop) will provide (from the
first guess and nearby observations) a very accurate estimate of what the
superchannels radiances should be.

b) These will be compared with the actual superchannels radiances and the ratio
between the difference (observational residual) to the expected (instrumental,
representativeness, etc.) standard deviation of the error for each superchannel will
be used to guide the accept/reject decision.

c) As for TOVS the rejection criteria will have to be tuned to the characteristics of the
system.  For example, in TOVS the interchannel error covariances for the radiances
are assumed to be zero, and this may not be the case for superchannels.

d) As is the case for TOVS, the bias between the simulated and observed
superchannel observations will be measured and corrected.

e) The results of these checks (number of out-of-range observations, bias, rms
difference between observational residuals, percentage of observations rejected, etc.,
will be saved for each superchannel and archived.

f) These archives will be posted on NCEP file servers and made available by ftp and
internet.  The results will be also graphically displayed on a monthly and/or
seasonal rotating archive on the internet.  NCEP has considerable experience
posting such data in near real time (see for example meteograms displayed on the
NCEP EMC home page, nic.fb4.noaa.gov:8000/), which are widely used by the
academic community and the public.

The graphic displays will allow the AIRS operators and the science team to monitor
and in real time and get an early warning of instrumental problems, and the immediate
impact of remedial actions or of improvements in the algorithms, such as the selection of
superchannels or the forward algorithms.

7.4. Statistical Error-Bar Assessment (Haskins)

The error budget for the geophysical retrieval of any space-based measurement
consists of the following sources of uncertainty (see Rodgers, 1990):

1. Instrument noise, which is relatively small for the AIRS instrument but can be
more significant for the microwave components.

2. ‘Null Space’ or unresolvable fine scale solution structure which is generally
manifested through the initial guess to the retrieval process

3. The mathematical retrieval error itself which has two major parts for the infrared
retrievals; errors due to cloud clearing and parameter retrieval errors.  Both of these
error sources will be closely examined and has been described in Section 4.3.3.

4. Errors in the radiative transfer calculation that generally result from incomplete
knowledge of underlying physics (line shape, line strength, etc.).   These types of
errors are systematic in nature and  for the AIRS retrieval system the errors are
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greatly reduced by ‘tuning’ against Radiosondes or possibly forecast models (see
section 5).

The solution error is characterized by the difference between measurement and the
retrieved geophysical parameters mapped back into brightness temperature through the
Radiative Transfer Equation (RTE).  This difference is commonly referred to as the
residual.
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FIGURE 7.4.1: RESIDUAL TO ERROR MAPPING

Considering the sources of error, if the residual is within the instrument noise
limits, then, ignoring the mathematical questions of uniqueness, the solution is as good as
can be expected.  If other sources of error dominate—which in our case is either null space
error or retrieval error—then no technique can minimize the residuals at the measurement
noise threshold and the residuals will, in a statistical sense, exceed the threshold.  It is this
criterion which will be utilized to characterize the error in the AIRS data sets.  

Use of EOFs to Characterize the Relation of  Error to Residual
Once brightness temperature residuals and measurement errors are placed on a

common space-time grid, one could conceivably generate a regression scheme to predict
measurement error from residual.  Unfortunately, such a regression would involve many
thousands of pairs of numbers from many different atmospheric regimes.  It would be far
better to apply separate regression relations under different conditions.  It is also important
to know those situations where radiance residual is a poor predictor of measurement error.
We can begin to address these problems by reducing the datasets to Empirical Orthogonal
Eigenfunctions (EOFs).  This  technique is a useful method for separating variability in a
complicated dataset because the EOFs express statistically dependent space-time variability
as a set of mathematically orthogonal structures.  They also compress a high-dimensional
dataset into a limited number of dominant modes. The EOFs will be the starting point for
subsequent analysis.

The basic methodology for calculating EOFs and their use in examining the
relationship between residual brightness temperature and measurement error will be
described. EOFs are simply the eigenvalues of error covariance matrices.  One can imagine
a time-varying set of maps of a quantity; the time covariance of this quantity forms a
square matrix of dimension equal to the total number of spatial gridpoints in the maps.
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The EOFs are the eigenmodes of this covariance matrix, and, like the original quantity they
form spatial maps.  The associated eigenvalues give the fraction of variance embodied in
each EOF.  The number of EOFs is equal to the number of degrees of freedom in the map,
but it is generally true in practice that only the first few modes carry most of the variance.
(Preisendorfer [1988] gives significance criteria.)  The important characteristics of EOFs
are: 1)  they are mathematically orthogonal, 2) they completely span the space of
measurements used to generate them, and 3) they generally compress information into a
few data structures.

There is also a direct relationship between the EOFs and the original quantity.  In
the case of residual temperatures, a map can be reconstructed at time t from the residual
temperature EOFs ϕ(x)  via

∆T(x,t) = ai (t)ϕ i (x)
i

∑ (7.4.1)

where i  represents eigenmode number and x is a general spatial coordinate;  here ai (t) is
the projection of the map  onto the EOF at time t, i. e. the inner product between the map at
time t and the i-th EOF ϕ i .  In practice the sum in (7.4.1) would be calculated over only
the first few, significant modes. It is important to note that there is only one value of  ai (t)
for each time t and mode number i and it is the same for each gridpoint in the map.

In this context we are also interested in the EOFs of measurement error, σ .  Maps of this
quantity can be expanded in terms of  its own EOFs χi (x):

σ(x,t) = bi
i

∑ (t)χi (x) (7.4.2)

Again, the χ i  are orthogonal and completely span the space of observation σ , and
the b’s are the projection of maps onto the EOFs.

Note that the two sets of coefficients ϕ  and χ  are not necessarily   orthogonal to
one another; the amount to which they are linearly dependent is a measure of their statistical
correlation.  The main purpose of this approach is to examine how well the variations in
measurement error σ(x,t) are characterized by radiance residuals ∆T(x,t), or, the degree
of statistical correlation between the two quantities.  One measure is

ˆ ( ) ˆ ( ) ( )σ χt b t xi
i

i= ∑ (7.4.3)

where ˆ ( )b c a ti ni n
n

= ∑ .  If ∆T  is a perfect predictor of σ  then σ̂  should be exactly equal to

σ  and b̂ bi i≡ ; if ∆T  has no relationship to σ , then σ̂  and σ  will be uncorrelated.  The
real relationship between ∆T  and σ  is somewhere between these two extremes.
Importantly, estimation of  statistical dependence is done as a set of objective algebraic
manipulations [ Preisendorfer (1988); Barnett et al.  (1981; 1987)].

Metric Verification
The basic tool we will use to verify the EOF quality of the relationship defined in

(7.4.3) is the  cross validation technique [chapters 8 and 9 of Preisendorfer (1988), and
illustrated in Barnett et al.  (1981; 1987)].  The method can be described as follows.
Remove an independent sample and construct the model in eq. 7.4.3 on the remaining N-1
samples.  Use this model and estimate σ̂  according to the removed (independent) data
sample.  Repeat the procedure, holding out successive independent data samples which
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result in new models according to eq. 7.4.3 and obtaining, at each step, an independent
estimate of σ̂ .  The end result is N independent estimates of σ̂ .  These can be ‘skill
scored’ with respect to the observed σ  and the significance of the solution in 7.4.3 relative
to, say, a simulated white or red noise process.

7.5. Software Exception Handling (Lee)
In the following discussion, all exceptions will be coded and passed along with the

level 2 data stream.

Failure Level 2 Retrieval Action
AIRS/AMSU/HSB
full data dropout

Reinitialize and restart retrieval upon encountering renewed data stream.
Extent of re-initialization depends upon the duration of the data dropout.

AIRS/AMSU/HSB
partial data dropout

Branch to partial retrieval depending on what is available to software

    AMSU only      MW-only Temperature Retrievals
    HSB only          pass
    AIRS only         pass
    AMSU/AIRS    Temperature/Moisture Retrieval
    AMSU/HSB     MW-only Temperature/Moisture Retrievals
    HSB/AIRS        pass

AIRS/AMSU/HSB
invalid data

Depending upon severity of invalid data:
    Ignore offending AIRS footprint data in retrieval and continue
    Ignore offending HSB footprint data in retrieval and continue
    Skip entire retrieval for corresponding AMSU footprint

MW-only Retrieval
Failure

Set relevant flag(s)
Set failed retrieval profile(s) to climatology and proceed

First Cloud-Clearing
Failure

Set relevant flag(s)
Branch to Second Cloud Clearing stage

First Retrieval
Failure

Set relevant flag(s)
Set failed retrieval profile(s) to MW-only and proceed

Second Cloud-Clearing
Failure

Set relevant flag(s)
Output remains that from First Retrieval

Second Retrieval
Failure

Set relevant flag
Output remains that from First Retrieval

TABLE 7.5.1  EXCEPTION HANDLING ON LEVEL 2 RETRIEVAL FAILURE
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